The 18-kb Xist long noncoding RNA (lncRNA) is essential for X-chromosome inactivation during female eutherian mammalian development. Global structural architecture, cell-induced conformational changes, and protein-RNA interactions within Xist are poorly understood. We used selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to examine these features of Xist at single-nucleotide resolution both in living cells and ex vivo. The Xist RNA forms complex welldefined secondary structure domains and the cellular environment strongly modulates the RNA structure, via motifs spanning onehalf of all Xist nucleotides. The Xist RNA structure modulates protein interactions in cells via multiple mechanisms. For example, repeatcontaining elements adopt accessible and dynamic structures that function as landing pads for protein cofactors. Structured RNA motifs create interaction domains for specific proteins and also sequester other motifs, such that only a subset of potential binding sites forms stable interactions. This work creates a broad quantitative framework for understanding structure-function interrelationships for Xist and other lncRNAs in cells.ong noncoding RNAs (lncRNAs) play central roles in the regulation of gene expression through interactions with numerous protein partners (1) and are necessary for normal health and development (2, 3). The 18-kb Xist lncRNA is essential for X-chromosome inactivation during female eutherian mammalian development and is an archetype of gene-silencing lncRNAs. During the early stages of X inactivation, Xist accumulates in cis around the future inactive X chromosome and recruits protein complexes that apply repressive chromatin modifications, leading to stable gene silencing (3,4).Genetic deletion studies have demarcated several broad regions of function within Xist. Several tandem repeat regions (labeled A-F in the mouse) show moderate conservation (5-7), and at least two of these, repeat A and the rodent-specific repeat C, are implicated in silencing and localization to the inactive X. Deletion of the final 7.5-kb exon of Xist causes a defect in its localization (8), and the 1.5-kb region encompassing repeats F and B is required for accumulation of heterochromatic marks over the inactive X (4); however, beyond these initial characterizations, the mechanisms by which gene silencing, heterochromatinization, and localization of Xist on the X chromosome occur are not well understood. In particular, the role of RNA structure in orchestrating these distinct functions remains unclear.Several previous studies have suggested the importance of RNA structures in specific regions of Xist (9-12), but overall, the locations and structures of functional domains within Xist are poorly defined. Detailed structural maps of other functional RNAs, such as ribosomal RNAs (13) and the HIV RNA genome (14-16), have been fundamental to understanding the mechanisms by which individual domains within large RNAs execute discrete cellular functions. A detailed an...
The functions of most long non-coding RNAs (lncRNAs) are unknown. In contrast to proteins, lncRNAs with similar functions often lack linear sequence homology; thus, the identification of function in one lncRNA rarely informs the identification of function in others. We developed a sequence comparison method to deconstruct linear sequence relationships in lncRNAs and evaluate similarity based on the abundance of short motifs called k-mers. We found that lncRNAs of related function often had similar k-mer profiles despite lacking linear homology, and that k-mer profiles correlated with protein binding to lncRNAs and with their subcellular localization. Using a novel assay to quantify Xist-like regulatory potential, we directly demonstrated that evolutionarily unrelated lncRNAs can encode similar function through different spatial arrangements of related sequence motifs. K-mer-based classification is a powerful approach to detect recurrent relationships between sequence and function in lncRNAs.
Upon activation by therapeutics, the nuclear xenobiotic/ constitutive active/androstane receptor (CAR) regulates various liver functions ranging from drug metabolism and excretion to energy metabolism. CAR can also be a risk factor for developing liver diseases such as hepatocellular carcinoma. Here we have characterized the conserved threonine 38 of human CAR as the primary residue that regulates nuclear translocation and activation of CAR. Protein kinase C phosphorylates threonine 38 located on the ␣-helix spanning from residues 29 -42 that constitutes a part of the first zinc finger and continues into the region between the zinc fingers. Molecular dynamics study has revealed that this phosphorylation may destabilize this helix, thereby inactivating CAR binding to DNA as well as sequestering it in the cytoplasm. We have found, in fact, that helix-stabilizing mutations reversed the effects of phosphorylation. Immunohistochemical study using an anti-phosphothreonine 38 peptide antibody has, in fact, demonstrated that the classic CAR activator phenobarbital dephosphorylates the corresponding threonine 48 of mouse CAR in the cytoplasm of mouse liver and translocates CAR into the nucleus. These results define CAR as a cell signal-regulated constitutive active nuclear receptor. These results also provide phosphorylation/dephosphorylation of the threonine as the primary drug target for CAR activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.