Glycogen storage disease type III (GSDIII) is a metabolic disorder characterized by a deficiency in the glycogen debranching enzyme, amylo-1,6-glucosidase,4-alpha-glucanotransferase (AGL). Patients with GSDIII commonly exhibit hypoglycemia, along with variable organ dysfunction of the liver, muscle or heart tissues. The AGL protein binds to glycogen through its C-terminal region, and possesses two separate domains for the transferase and glucosidase activities. Most causative mutations are nonsense, and how they affect the enzyme is not well understood. Here we investigated four rare missense mutations to determine the molecular basis of how they affect AGL function leading to GSDIII. The L620P mutant primarily abolishes transferase activity while the R1147G variant impairs glucosidase function. Interestingly, mutations in the carbohydrate-binding domain (CBD; G1448R and Y1445ins) are more severe in nature, leading to significant loss of all enzymatic activities and carbohydrate binding ability, as well as enhancing targeting for proteasomal degradation. This region (Y1445-G1448R) displays virtual identity across human and bacterial species, suggesting an important role that has been conserved throughout evolution. Our results clearly indicate that inactivation of either enzymatic activity is sufficient to cause GSDIII disease and suggest that the CBD of AGL plays a major role to coordinate its functions and regulation by the ubiquitin-proteasome system.
The structures of N-glycans of human blood clotting factor IX were studied. N-Glycans liberated by hydrazinolysis were N-acetylated and the reducing-end sugar residues were tagged with 2-aminopyridine. The pyridylamino (PA-) sugar chains thus obtained were purified by HPLC. Each PA-sugar chain was analyzed by two-dimensional sugar mapping combined with glycosidase digestion. The major structures of the N-linked sugar chains of human factor IX were found to be sialotetraantennary and sialotriantennary chains with or without fucose residues. These highly sialylated sugar chains are located on the activation peptide of the protein.
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disorder caused by deficiency of the glycogen-debranching enzyme (AGL). Recent studies of the AGL gene have revealed the prevalent mutations in North African Jewish and Caucasian populations, but whether these common mutations are present in other ethnic groups remains unclear. We have investigated eight Japanese GSD IIIa patients from seven families and identified seven mutations, including one splicing mutation (IVS 14+1G-->T) previously reported by us, together with six novel ones: a nonsense mutation (L124X), a splice site mutation (IVS29-1G-->C), a 1-bp deletion (587delC), a 2-bp deletion (4216-4217delAG), a 1-bp insertion (2072-2073insA), and a 3-bp insertion (4735-4736insTAT). The last mutation results in insertion of a tyrosine residue at a putative glycogen-binding site, and the rest are predicted to cause synthesis of truncated proteins lacking the glycogen-binding site at the carboxyl terminal. Thirteen novel polymorphisms have also been revealed in this study: three amino acid substitutions (R387Q, G1115R, and E1343 K), one silent point mutation (L298L), one nucleotide change in the 5'-noncoding region, and eight nucleotide changes in introns. Haplotype analysis with combinations of these polymorphic markers showed L124X, IVS14+1G-->T, and 4216-4217delAG to be on different haplotypes. These results demonstrate the importance of the integrity of the carboxy terminal domain in the AGL protein and the molecular heterogeneity of GSD IIIa in Japan.
The reactive of Streptomyces subtilisin inhibitor (SSI) was investigated by chymotryptic cleavage of the reactive site peptide bond and its resynthesis by inhibitor-subtilisin complex formation. The results show that the reactive site peptide bond of the inhibitor is Met(73)-Val(74) and that subtilisin specifically cleaved the Leu(6)-Tyr(7) bond of SSI upon complex formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.