We have isolated a cDNA that encodes a novel member of the Y-box binding protein family, termed as RYB-a (Rat Y-box Binding protein-a). RYB-a is a 31 kDa protein that contains a conserved cold-shock domain and an amino acid alignment similar to those of charge zipper proteins. Expression of RYB-a mRNA was highly abundant in the skeletal muscle, spleen, and fetal liver. The expression is very low in new-born and adult livers, suggesting its expression is under developmental regulation. In addition, the expression of RYB-a mRNA was induced in the liver during regeneration and by stimulation of quiescent fibroblast cells with serum. Induction in the fibroblasts was inhibited by treating the cell with a specific tyrosine kinase inhibitor, genistein or by detachment of cell-adhesion. Since both treatments are known to inhibit G1 cells to enter S phase, RYB-a gene is thought to be a member of growth-inducible genes.
The melanosome is a unique secretory granule of the melanocyte in which melanin pigments are synthesized by tyrosinase gene family glycoproteins. Melanogenesis is a highly regulated process because of its inherent toxicity. An understanding of the various regulatory mechanisms is important in delineating the pathophysiology involved in pigmentary disorders and melanoma. We have purified and analyzed the total melanosomal proteins from B16 mouse melanoma tumors in order to identify new proteins that may be involved in the control of the melanogenesis process. Melanosomal proteins were resolved by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, a predominant spot (27 kDa with isoelectric point 5.8-6.4) was excised and digested with cyanogen bromide, and the fragments were sequenced. Synthetic oligonucleotide primers were synthesized corresponding to the peptide sequences, and reverse transcriptase polymerase chain reaction amplification of total RNA from B16 cells was carried out. Sequencing of one of the polymerase-chain-reaction-mediated clones demonstrated 80%-97% sequence homology of 200 bp nucleotide with GTP-binding proteins at the 3'-untranslated region. GTP-binding assay on two-dimensional gels of melanosomal proteins showed the presence of several (five to six) small GTP-binding proteins, suggesting that small GTP-binding proteins are associated with the melanosome. Among the known GTP-binding proteins with similar molecular weight and isoelectric point ranges, rab3, rab7, and rab8 were found to be present in the melanosomal fraction by immunoblotting. Confocal immunofluorescence microscopy showed that rab7 is colocalized with the tyrosinase-related protein 1 around the perinuclear area as well as, in part, in the perikaryon, thereby suggesting that rab7 might be involved in the intracellular transport of tyrosinase-related protein 1. Tyrosinase-related protein 1 transport was blocked by the treatment of B16 cells with antisense oligonucleotide to rab7. We suggest (i) that rab7 is a melanosome-associated molecule, (ii) that tyrosinase-related protein 1 is present in late-endosome delineated granules, and (iii) that rab7 is involved in the transport of tyrosinase-related protein 1 from the late-endosome delineated granule to the melanosome.
Singlet oxygen causes the cytotoxic process of tumour cells in photodynamic therapy. The mechanism by which singlet oxygen damages cells is, however, not fully understood. To address this issue, we synthesized and used two types of endoperoxides, MNPE (1-methylnaphthalene-4-propionate endoperoxide) and NDPE (naphthalene-1,4-dipropionate endoperoxide), that generate defined amounts of singlet oxygen at 37 degrees C with similar half lives. MNPE, which is more hydrophobic than NDPE, induced the release of cytochrome c from mitochondria into the cytosol and exhibited cytotoxicity, but NDPE did not. RBL cells, a rat basophil leukaemia-derived line, that overexpress phospholipid hydroperoxide glutathione peroxidase in mitochondria were found to be highly resistant to the cytotoxic effect of MNPE. MNPE treatment induced much less DNA ladder formation and nuclear fragmentation in cells than etoposide treatment, even though these treatments induced a similar extent of cellular damage. Singlet oxygen inhibited caspase 9 and 3 activities directly and also suppressed the activation of the caspase cascade. Collectively, these data suggest that singlet oxygen triggers an apoptotic pathway by releasing cytochrome c from mitochondria via the peroxidation of mitochondrial components and results in cell death that is different from typical apoptosis, because of the abortive apoptotic pathway caused by impaired caspase activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.