This study verifies the instability of garlic (Allium sativum L.)-derived allyl 2-propenylthiosulfinate (allicin) in various aqueous and ethanolic solutions as well as in vegetable oil through chemical and biological analyses performed simultaneously. Crushed fresh garlic cloves generated antibacterial activity and chemically detectable allicin, a major antibacterial principle, and both declined on a daily basis in aqueous and ethanolic solutions at room temperature, showing biological and chemical half-lives of about 6 and 11 days, respectively. Allicin was more stable in 20% alcohol than in water, but surprisingly unstable in vegetable oil, with an activity half-life 0.8 h, as estimated from its antibacterial activity toward Escherichia coli, and a chemical half-life of 3.1 h, based on chromatographic quantification. In alcoholic and aqueous extracts, the biological half-life of allicin tended to be longer than the chemical one, suggesting the occurrence of bioactive compounds other than allicin in the extracts.
The garlic-derived antibacterial principle, alk(en)yl sulfinate compounds, has long been considered as very short-lived substance. However, there are some data showing a rather more stable nature of allicin. We determined here the thermostability of allicin by a systematic analyses employing chemical quantification and an antibacterial activity assay. Allicin in an aqueous extract of garlic was degraded stoichiometrically in proportion to the temperature; we estimated the halflife of allicin to be about a year at 4 C (from 1.8 mg/ml to 0.9 mg/ml) and 32 d at 15C, but only 1 d at 37 C (from 2.0 mg/ml to 1.0 mg/ml). The half-life values for antibacterial activity showed a similar trend in results: 63 d or more at 4 C for both antibacterial activities, 14 d for anti-staphylococcal activity, and 26 d for antiescherichia activity at 15 C, but only 1.2 d and 1.9 d for the respective activities at 37 C. Such antibacterial activities were attributable to the major allicin, allyl 2-propenylthiosulfinate. Surprisingly, the decline in the quantity of allicin was not accompanied by its degradation; instead, allicin became a larger molecule, ajoene, which was 3-times larger than allicin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.