In macroautophagy, cytoplasmic contents are sequestered into the double-membrane autophagosome, which fuses with the lysosome to become the autolysosome. It has been thought that the autophagy-related (ATG) conjugation systems are required for autophagosome formation. Here, we found that autophagosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 17-positive autophagosome-like structures could be generated even in the absence of the ATG conjugation systems, although at a reduced rate. These syntaxin 17-positive structures could further fuse with lysosomes, but degradation of the inner autophagosomal membrane was significantly delayed. Accordingly, autophagic activity in ATG conjugation-deficient cells was strongly suppressed. We suggest that the ATG conjugation systems, which are likely required for the closure (i.e., fission) of the autophagosomal edge, are not absolutely essential for autolysosome formation but are important for efficient degradation of the inner autophagosomal membrane.
Proteins are typically denatured and aggregated by heating at near-boiling temperature. Exceptions to this principle include highly disordered and heat-resistant proteins found in extremophiles, which help these organisms tolerate extreme conditions such as drying, freezing, and high salinity. In contrast, the functions of heat-soluble proteins in non-extremophilic organisms including humans remain largely unexplored. Here, we report that heatresistant obscure (Hero) proteins, which remain soluble after boiling at 95˚C, are widespread in Drosophila and humans. Hero proteins are hydrophilic and highly charged, and function to stabilize various "client" proteins, protecting them from denaturation even under stress conditions such as heat shock, desiccation, and exposure to organic solvents. Hero proteins can also block several different types of pathological protein aggregations in cells and in Drosophila strains that model neurodegenerative diseases. Moreover, Hero proteins can extend life span of Drosophila. Our study reveals that organisms naturally use Hero proteins as molecular shields to stabilize protein functions, highlighting their biotechnological and therapeutic potential.
Advances in DNA sequencing and machine learning are illuminating protein sequences and structures on an enormous scale. However, the energetics driving folding are invisible in these structures and remain largely unknown. The hidden thermodynamics of folding can drive disease, shape protein evolution, and guide protein engineering, and new approaches are needed to reveal these thermodynamics for every sequence and structure. We present cDNA display proteolysis, a new method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of ~850,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 354 natural and 188 de novo designed protein domains 40-72 amino acids in length. Using this immense dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate, and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.
Advances in DNA sequencing and machine learning are providing insights into protein sequences and structures on an enormous scale1. However, the energetics driving folding are invisible in these structures and remain largely unknown2. The hidden thermodynamics of folding can drive disease3,4, shape protein evolution5–7 and guide protein engineering8–10, and new approaches are needed to reveal these thermodynamics for every sequence and structure. Here we present cDNA display proteolysis, a method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of around 776,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 331 natural and 148 de novo designed protein domains 40–72 amino acids in length. Using this extensive dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.