This paper investigates a new front-end processing that aims at improving the performance of speech recognition in noisy mobile environments. This approach combines features based on conventional Mel-cepstral Coefficients (MFCCs), Line Spectral Frequencies (LSFs) and formant-like (FL) features to constitute robust multivariate feature vectors. The resulting front-end constitutes an alternative to the DSR-XAFE (XAFE: eXtended Audio FrontEnd) available in GSM mobile communications. Our results showed that for highly noisy speech, using the paradigm that combines these spectral cues leads to a significant improvement in recognition accuracy on the Aurora 2 task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.