Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.
Climate and trade changes are reshaping the cartographic distribution of lethal pervasive pathogens. Among serious emerging challenges is Xylella fastidiosa (Xf), a xylem-limited phytopathogenic bacterium that produces losses and damages to numerous crops of high economic and agronomic importance. Lately, this grave quarantine pathogen has expended its distribution by arriving to several European countries and infecting both wild and cultivated plants, and no cure has been identified so far. Countries without current outbreaks like Morocco, need to monitor theirs crops frequently because detecting diseases in the early stages may reduce the huge losses caused by Xf. For that purpose, inspections were managed in different regions in Morocco from March 2020 to July 2021 to assess the presence of Xf in several growing areas of vulnerable economic crops (i.e., almond, citrus and olive). To extend the likelihood of detection, hosts have been inspected and sampled randomly over different environments including symptomatic and asymptomatic plants. Each sample was screened for the existence of Xf by using the DAS-ELISA commercial kit, while, further analyses were carried out for doubtful samples, by PCR. Results of both tests did not show any positive sample in the investigated areas. This finding is an update on the Xf situation in Morocco and confirms that this country is still a free territory from this bacterium, at least in the monitored regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.