BackgroundBuparvaquone (BW 720C) is the major hydroxynaphtoquinone active against tropical theileriosis (Theileria annulata infection). Previous studies showed that buparvaquone, similarly to others hydroxynaphtoquinone, probably acts by binding to cytochrome b (cyt b) inhibiting the electron transport chain in the parasite. Several observations suggested that T. annulata is becoming resistant to buparvaquone in many endemic regions (Tunisia, Turkey and Iran), which may hinder the development of bovine livestock in these areas.Methodology/Principal FindingsIn the present study we sought to determine whether point mutations in T. annulata cytochrome b gene could be associated to buparvaquone resistance. A total of 28 clones were studied in this work, 19 of which were obtained from 3 resistant isolates (ST2/12, ST2/13 and ST2/19) collected at different time after treatment, from a field treatment failure and nine clones isolated from 4 sensitive stocks of T. annulata (Beja, Battan, Jed4 and Sousse). The cytochrome b gene was amplified and sequenced. We identified five point mutations at the protein sequences (114, 129, 253, 262 and 347) specific for the clones isolated from resistant stocks. Two of them affecting 68% (13/19) of resistant clones, are present in the drug-binding site Q02 region at the position 253 in three resistant clones and at the position 262 in 11 out of 19 resistant clones. These two mutations substitute a neutral and hydrophobic amino acids by polar and hydrophilic ones which could interfere with the drug binding capabilities. When we compared our sequences to the Iranian ones, the phylogenetic tree analyses show the presence of a geographical sub-structuring in the population of T. annulata.Conclusions/SignificanceTaken together, our results suggest that the cytochrome b gene may be used as a tool to discriminate between different T. annulata genotypes and also as a genetic marker to characterize resistant isolates of T. annulata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.