These data support the lack of dose or exposure dependency in pembrolizumab OS for melanoma and NSCLC between 2 and 10 mg/kg. An association of pembrolizumab CL with OS potentially reflects catabolic activity as a marker of disease severity versus a direct PK-related impact of pembrolizumab on efficacy. Similar data from other trials suggest such patterns of exposure-response confounding may be a broader phenomenon generalizable to antineoplastic mAbs..
One of the key objectives of oncology first-in-human trials has often been to establish the maximum tolerated dose (MTD). However, targeted therapies might not exhibit doselimiting toxicities (DLT) at doses significantly higher than sufficiently active doses, and there is frequently a limited ability to objectively quantify adverse events. Thus, while MTD-based determination of recommended phase II dose may have yielded appropriate dosing for some cytotoxics, targeted therapeutics (including monoclonal antibodies and/or immunotherapies) sometimes need alternative or complementary strategies to help identify dose ranges for a randomized dose-ranging study. One complementary strategy is to define a biologically efficacious dose (BED) using an "effect marker." An effect marker could be a target engagement, pharmacodynamic, or disease progression marker (change in tumor size for solid tumors or bone marrow blast count for some hematologic tumors). Although the concept of BED has been discussed extensively, we review specific examples in which the approach influenced oncology clinical development. Data extracted from the literature and the examples support improving dose selection strategies to benefit patients, providers, and the biopharmaceutical industry. Although the examples illustrate key contributions of effect markers in dose selection, no one-size-fits-all approach to dosing can be justified. Higher-than-optimal dosing can increase toxicity in later trials (and in clinical use), which can have a negative impact on efficacy (via lower adherence or direct sequelae of toxicities). Proper dose selection in oncology should follow a multifactorial decision process leading to a randomized, dose-ranging study instead of a single phase II dose.
Pembrolizumab is a potent immune‐modulating antibody active in advanced melanoma, as demonstrated in the KEYNOTE‐001, ‐002, and ‐006 studies. Longitudinal tumor size modeling was pursued to quantify exposure‐response relationships for efficacy. A mixture model was first developed based on an initial dataset from KEYNOTE‐001 to describe four patterns of tumor growth and shrinkage. For subsequent analyses, tumor size measurements were adequately described by a single consolidated model structure that captured continuous tumor size with a combination of growth and regression terms, as well as a fraction of tumor responsive to therapy. This revised model structure provided a framework to efficiently evaluate the impact of covariates and pembrolizumab exposure. Both models indicated that exposure to the drug was not a significant predictor of tumor size response, demonstrating that the dose range evaluated (2 and 10 mg/kg every 3 weeks) is likely near or at the plateau of maximal response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.