Antimicrobial resistance (AMR) in Escherichia coli (E. coli) poses a public health concern worldwide. Wild birds and rodents, due to their mobility, are potential vehicles for transmission of AMR bacteria to humans. Ninety-six wild birds’ faecal samples and 135 rodents’ droppings samples were collected and analysed in 2017. Forty-six E. coli isolates from wild birds and rodents were subjected to AMR phenotypic and genotypic characterisation. The proportion of E. coli isolates resistant to at least one of the antimicrobials tested from wild birds (80.8%) was significantly higher than that of isolates from rodents (40.0%). The proportion of E. coli isolates resistant to each antimicrobial class for wild birds was 3.8% to 73.1% and that for rodents was 5.0% to 35.0%. Six out of 26 E. coli isolates from wild birds (23.1%) and two out of 20 (10.0%) isolates from rodents were multi-drug resistant (MDR) strains. These MDR E. coli isolates were detected with various antimicrobial resistance genes such as blaTEM-1B and qnrS1 and could be considered as part of the environmental resistome. Findings in this study suggested that wild birds and rodents could play a role in disseminating antimicrobial resistant E. coli, and this underscores the necessity of environment management and close monitoring on AMR bacteria in wild birds and rodents to prevent spreading of resistant organisms to other wildlife animals and humans.
BackgroundRice is a staple food crop in the world. With the increase in world population and economic development, farmers need to produce more rice in limited field. However, the rice production is frequently affected by biotic and abiotic stresses. The use of natural disease resistance and stress tolerance through genetic breeding is the most efficient and economical way to combat or acclimate to these stresses. In addition, rice with aromatic fragrance can significantly increase market value for its good grain quality. Mianhui 725 (MH725) is an elite restorer line that has been widely used to produce three-line hybrid rice in China. We previously introduced rice bacterial blight resistance genes Xa4 and Xa21 into MH725 and obtained an introgression rice line Wanhui 421 (WH421), which theoretically possesses 96.9% genetic background of MH725.ResultsHere we report the introduction and pyramiding of disease resistance genes Xa27 and Pi9, submergence tolerance gene Sub1A and aromatic fragrance gene badh2.1 in WH421 through backcrossing and marker-assisted selection. The newly developed introgression rice line was designated as Wanhui 6725 (WH6725), which theoretically possesses 95.0% genetic background of MH725. WH6725 and its hybrid rice conferred disease resistance to both blast and bacterial blight diseases and showed tolerance to submergence for over 14 days without significant loss of viability. Compared with non-aromatic rice MH725, WH6725 has strong aromatic fragrance. The major important agronomic traits and grain quality of WH6725 and its hybrid rice obtained in field trials were similar to those of MH725 and the control hybrid rice, indicating that WH6725 is as good as MH725 when it is used as a restorer line for three-line hybrid rice production.ConclusionWe have successfully developed a new restorer line WH6725 with disease resistance to rice blast and bacterial blight, tolerance to submergence and aromatic fragrance, which can be used to replace MH725 for hybrid rice production.
Salmonella enteritidis is a major foodborne pathogen worldwide. In this study, a total of 276 S. enteritidis isolates, collected between 2016 and 2017 from human, food and farm/slaughterhouse samples, were studied to enhance the understanding of the epidemiology of human salmonellosis in Singapore. Results showed all 276 isolates belonged either to ST1925 (70.3%) or ST11 (29.7%), with ST11 being significantly more frequent in extra-intestinal isolates and chicken isolates. Food isolates, most of which were from poultry, showed the highest prevalence of resistance (33–37%) against beta-lactams or beta-lactams/beta-lactamase inhibitor combination (ampicillin, piperacillin and ampicillin/sulbactam). The analysis showed the detection of genes associated with resistance to aminoglycoside genes (99.6%), tetracycline (55.1%), and beta-lactams (14.9%) of all isolates. Nine types of plasmids were found in 266 isolates; the most common incompatibility group profiles were IncFIB(S)-IncFII(S)-IncX1 (72.2%) and IncFIB(S)-IncFII(S) (15.8%). Most plasmid harbouring isolates from chicken (63.6%, 14/22) and from human (73.8%, 175/237) shared the same plasmid profile (IncFIB(S)-IncFII(S)-IncX1). SNP analysis showed clustering of several isolates from poultry food products and human isolates, suggesting phylogenetic relatedness among these isolates. Lastly, this study provides important epidemiological insights on the application of phenotypic and next-generation sequencing (NGS) tools for improved food safety and public health surveillance and outbreak investigation of S.enteritidis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.