Horseweed is a problematic weed to control, especially in no-tillage production. Increasing cases of herbicide resistance have exacerbated the problem, necessitating alternative control options and an integrated weed management approach. Field experiments were conducted to evaluate horseweed suppression from fall-planted cover crop monocultures and mixtures as well as two fall-applied residual herbicide treatments. Prior to cover crop termination, horseweed density was reduced by 88% to 96% from cover crops. At cover crop termination in late spring, cereal rye biomass was 7,671 kg ha–1, which was similar to cereal rye–containing mixtures (7,720 kg ha–1) but greater than legumes in monoculture (3,335 kg ha–1). After cover crops were terminated in late spring using a roller crimper, corn and soybeans were planted and horseweed was evaluated using density counts, visible ratings, and biomass collection until harvest. Forage radish winterkilled, offering no competition in late winter or biomass to contribute to horseweed suppression after termination. Excluding forage radish in monoculture, no difference in horseweed suppression was detected between cereal rye–containing cover crops and legumes (crimson clover and hairy vetch) in monoculture. Likewise, horseweed suppression was similar between monocultures and mixtures, with the exception of one site-year in which mixtures provided better suppression. In this experiment, the cover crop treatments performed as well as or better than the fall-applied residual herbicides, flumioxazin+paraquat and metribuzin+chlorimuron-ethyl. These results indicate that fall-planted cover crops are a viable option to suppress horseweed and can be an effective part of an integrated weed management program. Furthermore, cover crop mixtures can be used to gain the benefits of legume or brassica cover crop species without sacrificing horseweed suppression.
Cover crop residue can act as a mulch that will suppress weeds, but as the residue degrades, weed suppression diminishes. Biomass of cover crop residue is positively correlated to weed suppression, but little research is available regarding the composition of cover crop residue and its effect on weed suppression. Field experiments were conducted to determine the impact of cover crop residue properties (i.e., total carbon, total nitrogen, lignin, cellulose, and hemicellulose) on summer annual weed suppression and cash crop yield. Cover crop monocultures and mixtures were planted in the fall and designed to provide a range of biomass and residue properties. Cover crops were followed by corn (Zea mays L.) or soybean [Glycine max (L.) Merr.]. At termination, cover crop biomass and residue components were determined. Biomass ranged from 3,640 to 8,750 kg ha−1, and the carbon-to-nitrogen (C:N) ratio ranged from 12:1 to 36:1. As both cover crop biomass and C:N ratio increased, weed suppression and duration of suppression increased. For example, a C:N ratio of 9:1 is needed to suppress redroot pigweed (Amaranthus retroflexus L.) 50% at 4 wk after termination (WAT), and that increases to 16:1 and 20:1 to have 50% suppression at 6 and 8 WAT, respectively. Similarly, with biomass, 2,800 kg ha−1 is needed for 50% A. retroflexus suppression at 4 WAT, which increases to 5,280 kg ha−1 and 6,610 kg ha−1 needed for 50% suppression at 6 and 8 WAT, respectively. In general, similar trends were observed for pitted morningglory (Ipomoea lacunosa L.) and large crabgrass [Digitaria sanguinalis (L.) Scop.]. Corn and soybean yield increased as both cover crop biomass and C:N ratio increased where no weed control measures were implemented beyond cover crop. The same trend was observed with cash crop yield in the weed-free subblocks, with one exception. This research indicates that cover crop residue composition is important for weed control in addition to biomass.
Residual herbicides applied to summer cash crops have the potential to injure subsequent winter annual cover crops, yet little information is available to guide growers’ choices. Field studies were conducted in 2016 and 2017 in Blacksburg and Suffolk, Virginia, to determine carryover of 30 herbicides commonly used in corn, soybean, or cotton on wheat, barley, cereal rye, oats, annual ryegrass, forage radish, Austrian winter pea, crimson clover, hairy vetch, and rapeseed cover crops. Herbicides were applied to bare ground either 14 wk before cover crop planting for a PRE timing or 10 wk for a POST timing. Visible injury was recorded 3 and 6 wk after planting (WAP), and cover crop biomass was collected 6 WAP. There were no differences observed in cover crop biomass among herbicide treatments, despite visible injury that suggested some residual herbicides have the potential to effect cover crop establishment. Visible injury on grass cover crop species did not exceed 20% from any herbicide. Fomesafen resulted in the greatest injury recorded on forage radish, with greater than 50% injury in 1 site-year. Trifloxysulfuron and atrazine resulted in greater than 20% visible injury on forage radish. Trifloxysulfuron resulted in the greatest injury (30%) observed on crimson clover in 1 site-year. Prosulfuron and isoxaflutole significantly injured rapeseed (17% to 21%). Results indicate that commonly used residual herbicides applied in the previous cash crop growing season result in little injury on grass cover crop species, and only a few residual herbicides could potentially affect the establishment of a forage radish, crimson clover, or rapeseed cover crop.
Cover crops provide a number of agronomic benefits, including weed suppression, which is important as cases of herbicide resistance continue to rise. To effectively suppress weeds, high cover crop biomass is needed, which necessitates later termination timing. Cover crop termination is important to mitigate potential planting issues and prevent surviving cover crop competition with cash crops. Field studies were conducted in Virginia to determine the most effective herbicide options alone or combined with glyphosate or paraquat to terminate a range of cover crop species. Results revealed that grass cover crop species were controlled (94% to 98%) by glyphosate alone 4 wk after application (WAA). Overall, legume species varied in response to the single active-ingredient treatments, and control increased with the addition of glyphosate or paraquat. Mixes with glyphosate provided better control of crimson clover and hairy vetch by 7% to 8% compared with mixes containing paraquat 4 WAA. Mix partner did not influence control of Austrian winter pea. No treatment adequately controlled rapeseed in this study, with a maximum of 58% control observed with single active-ingredient treatments and 62% control with mixes. Height reduction for all cover crop species supports visible rating data. Rapeseed should be terminated when smaller, which could negate weed suppressive benefits from this cover crop species. Growers should consider herbicide selection and termination timing in their cover crop plan to ensure effective termination.
Horseweed [Conyza canadensis (L.) Cronquist] plants present during small grains harvest are variable in size, but tall plants are mechanically cut (“topped”) by the combine. Horseweed is best controlled prior to planting double‐cropped soybeans, which must be planted quickly after harvest to preserve yield potential. This urgency eliminates an opportunity for horseweed regrowth, leaving topped plants with reduced leaf area for herbicide spray interception, likely impacting herbicidal control, but little information has been reported in this regard. Horseweed control is further complicated by the prevalence of multiple herbicide‐resistant biotypes. Therefore, field research was conducted to evaluate herbicidal control of glyphosate‐susceptible horseweed that was topped (cut to 46 cm tall) prior to treatment. Additional greenhouse experiments evaluated glyphosate‐resistant horseweed at the rosette and bolt growth stages as well as topped plants prior to treatment. Paraquat alone or in combination with 2,4‐D or dicamba, resulted in 80 to 100% control of topped horseweed across field and greenhouse experiments. In greenhouse experiments, the rosette growth stage was most effectively controlled, followed by the bolt growth stage, which was similar or more effectively controlled, compared with topped horseweed. The authors recommend paraquat with 2,4‐D or dicamba for control of topped horseweed plants, due to efficacy and mixing of multiple effective herbicides. Core Ideas Small grains harvest equipment can cut horseweed, reducing herbicide efficacy. Paraquat containing treatments controlled rosette, bolt, and topped horseweed ≥80%. Dicamba and 2,4‐D controlled rosette stage glyphosate‐resistant horseweed >90%. Authors recommend paraquat with 2,4‐D or dicamba to control topped horseweed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.