Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately two-fold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we demonstrate that engineered haplodeficiency of IL-2 gene expression not only reduces T cell IL-2 production by two-fold but also mimics the autoimmune dysregulatory effects of the naturally-occurring susceptibility alleles of IL-2. Reduced IL-2 production achieved by both genetic mechanisms correlates with fewer and less functional CD4+CD25+ regulatory T cells, which are critical for maintaining immune homeostasis.Multifactorial diseases with high population prevalence develop as a result of interactions between multiple genetic and environmental factors. Since the early 1990s, several loci have been mapped by genetic linkage and association analyses in humans and in rodent models of autoimmune disease, including type 1 diabetes (T1D). T1D is caused by the destruction of the insulin-producing pancreatic beta cells by various immune cell types, including CD8+ cytotoxic T-cells. In human T1D, four loci, in addition to the HLA region, have been identified: the genes encoding insulin, the negative immunoregulatory molecules CTLA-4 and LYP, and, most recently, the alpha chain of the interleukin-2 receptor (CD25) 1 . All of these common variants or haplotypes support the concept that autoimmunity is a part of normal physiology, and that the balance between immune responses to foreign antigens and
BackgroundInterleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs.Methods and FindingsTo define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = −0.052, 0.254) and 0.497 × 106 IU/m2 (SE = 0.092, 95% CI = 0.316, 0.678), respectively. On analysis of secondary outcomes, using a highly sensitive IL-2 assay, the observed plasma concentrations of the drug at 90 min exceeded the hypothetical Treg-specific therapeutic window determined in vitro (0.015–0.24 IU/ml), even at the lowest doses (0.040 × 106 and 0.045 × 106 IU/m2) administered. A rapid decrease in Treg frequency in the circulation was observed at 90 min and at day 1, which was dose dependent (mean decrease 11.6%, SE = 2.3%, range 10.0%–48.2%, n = 37), rebounding at day 2 and increasing to frequencies above baseline over 7 d. Teffs, natural killer cells, and eosinophils also responded, with their frequencies rapidly and dose-dependently decreased in the blood, then returning to, or exceeding, pretreatment levels. Furthermore, there was a dose-dependent down modulation of one of the two signalling subunits of the IL-2 receptor, the β chain (CD122) (mean decrease = 58.0%, SE = 2.8%, range 9.8%–85.5%, n = 33), on Tregs and a reduction in their sensitivity to al...
At least two loci that determine susceptibility to type 1 diabetes in the NOD mouse have been mapped to chromosome 1, Idd5.1 (insulin-dependent diabetes 5.1) and Idd5.2. In this study, using a series of novel NOD.B10 congenic strains, Idd5.1 has been defined to a 2.1-Mb region containing only four genes, Ctla4, Icos, Als2cr19, and Nrp2 (neuropilin-2), thereby excluding a major candidate gene, Cd28. Genomic sequence comparison of the two functional candidate genes, Ctla4 and Icos, from the B6 (resistant at Idd5.1) and the NOD (susceptible at Idd5.1) strains revealed 62 single nucleotide polymorphisms (SNPs), only two of which were in coding regions. One of these coding SNPs, base 77 of Ctla4 exon 2, is a synonymous SNP and has been correlated previously with type 1 diabetes susceptibility and differential expression of a CTLA-4 isoform. Additional expression studies in this work support the hypothesis that this SNP in exon 2 is the genetic variation causing the biological effects of Idd5.1. Analysis of additional congenic strains has also localized Idd5.2 to a small region (1.52 Mb) of chromosome 1, but in contrast to the Idd5.1 interval, Idd5.2 contains at least 45 genes. Notably, the Idd5.2 region still includes the functionally polymorphic Nramp1 gene. Future experiments to test the identity of Idd5.1 and Idd5.2 as Ctla4 and Nramp1, respectively, can now be justified using approaches to specifically alter or mimic the candidate causative SNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.