There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts – cis effects, and elsewhere in the genome – trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10−57), CCL4L1 (p = 3.9×10−21), IL18 (p = 6.8×10−13), LPA (p = 4.4×10−10), GGT1 (p = 1.5×10−7), SHBG (p = 3.1×10−7), CRP (p = 6.4×10−6) and IL1RN (p = 7.3×10−6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10−40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways.
the epidemiology of impaired balance differs from that of dizziness, and risk assessment approaches to prevent falls may need to elicit information on different problem-specific factors. Impaired balance test performance in older people may be added to the many outcomes showing strong socio-economic gradients.
Interleukin-6 (IL-6) is a key inflammatory cytokine, signalling to most tissues by binding to a soluble IL-6 receptor (sIL-6r), making a complex with gp130. We used 1273 subjects (mean age 68 years) from the InCHIANTI Italian cohort to study common variation in the IL-6r locus and associations with interleukin 6 receptor (IL-6r), IL-6, gp130 and a battery of inflammatory markers. The rs4537545 single nucleotide polymorphism (SNP) tags the functional non-synonymous Asp358Ala variant (rs8192284) in IL-6r (r(2)=0.89, n=343). Individuals homozygous for the rs4537545 SNP minor allele (frequency 40%) had a doubling of IL-6r levels (132.48 pg/ml, 95% CI 125.13-140.27) compared to the common allele homozygous group (68.31 pg/ml, 95% CI 65.35-71.41): in per allele regression models, the rs4537545 SNP accounted for 20% of the variance in sIL-6r, with P=5.1 x 10(-62). The minor allele of rs4537545 was also associated with higher circulating IL-6 levels (P=1.9 x 10(-4)). There was no association of this variant with serum levels of gp130 or with any of the studied pro- and anti-inflammatory markers. A common variant of the IL-6r gene results in major changes in IL-6r and IL-6 serum levels, but with no apparent effect on gp130 levels or on inflammatory status in the general population.
Interleukin-1-receptor antagonist (IL-1RA) modulates the biological activity of the proinflammatory cytokine interleukin-1 (IL-1) and could play an important role in the pathophysiology of inflammatory and metabolic traits. We genotyped seven single nucleotide polymorphisms (SNPs) that capture a large proportion of common genetic variation in the IL-1RN gene in 1256 participants from the Invecchiare in Chianti study. We identified five SNPs associated with circulating IL-1RA levels with varying degrees of significance (P-value range ¼ 0.016-4.9 Â 10 À5 ). We showed that this association is likely to be driven by one haplotype, most strongly tagged by rs4251961. This variant is only in weak linkage disequilibrium (r 2 ¼ 0.25) with a previously reported variable number of tandem repeats polymorphism (VNTR) in intron-2 although a second variant, rs579543, that tags the VNTR (r 2 ¼ 0.91), may also be independently associated with IL-1RA levels (P ¼ 0.03). We found suggestive evidence that the C allele at rs4251961 that lowers IL-1RA levels is associated with an increased IL-1b (P ¼ 0.03) level and may also be associated with interferon -g (P ¼ 0.03), a-2 macroglobulin (P ¼ 0.008) and adiponectin (P ¼ 0.007) serum levels. In conclusion, common variation across the IL-1RN gene is strongly associated with IL-1RA levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.