Telomeres are nucleoprotein structures that cap the end of each chromosome arm and function to maintain genome stability. The length of telomeres is known to shorten with each cell division and it is well-established that telomere attrition is related to replicative capacity in vitro. Moreover, telomere loss is also correlated with the process of aging in vivo. In this review, we discuss the mechanisms that lead to telomere shortening and summarise telomere homeostasis in humans throughout a lifetime. In addition, we discuss the available evidence that shows that telomere shortening is related to human aging and the onset of age-related disease.
Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C 12 -homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C 12 -homoserine lactone, may be used by other quorumsensing molecules.
There are well-established morbidities associated with preterm birth including respiratory, neurocognitive and developmental disorders. However several others have recently emerged that characterise an ‘aged’ phenotype in the preterm infant by term-equivalent age. These include hypertension, insulin resistance and altered body fat distribution. Evidence shows that these morbidities persist into adult life, posing a significant public health concern. In this study, we measured relative telomere length in leukocytes as an indicator of biological ageing in 25 preterm infants at term equivalent age. Comparing our measurements with those from 22 preterm infants sampled at birth and from 31 term-born infants, we tested the hypothesis that by term equivalent age, preterm infants have significantly shorter telomeres (thus suggesting that they are prematurely aged). Our results demonstrate that relative telomere length is highly variable in newborn infants and is significantly negatively correlated with gestational age and birth weight in preterm infants. Further, longitudinal assessment in preterm infants who had telomere length measurements available at both birth and term age (n = 5) suggests that telomere attrition rate is negatively correlated with increasing gestational age. Contrary to our initial hypothesis however, relative telomere length was significantly shortest in the term born control group compared to both preterm groups and longest in the preterm at birth group. In addition, telomere lengths were not significantly different between preterm infants sampled at birth and those sampled at term equivalent age. These results indicate that other, as yet undetermined, factors may influence telomere length in the preterm born infant and raise the intriguing hypothesis that as preterm gestation declines, telomere attrition rate increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.