Temperature-sensitive mutant of Moloney murine leukemia virus-TB (MoMuLV-ts1)-mediated neuronal death in mice is likely due to both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Cytotoxic mediators present in ts1-induced spongiform lesions may generate endoplasmic reticulum (ER) stress, which has been implicated in the pathogenesis of a variety of neurodegenerative diseases. We investigated whether ER stress signaling is involved in ts1-mediated neuronal loss in the brain of infected mice. ts1-infected brainstems were found to show significant increases in phosphorylation of the double-stranded RNA-dependent protein kinase-like ER kinase and eukaryotic initiation factor 2-a. In addition, increased expression of growth arrest DNA damage 153 (GADD153), glucose-regulated protein 78, and caspase-12 were accompanied by increases in processing of caspase-12 and its downstream target, caspase-3. All of these events are markers of ER stress. We observed that GADD153 and cleaved caspase-3 were present in degenerative neurons in the lesions of infected mice, but not in uninfected controls. Phosphorylated calmodulin-dependent protein kinase II-a was significantly increased, and was coexpressed with GADD153 in a large proportion of neurons undergoing early and advanced degenerative changes. Finally, neuronal degeneration in spongiform lesions was associated with increase in calcium (Ca 2 þ ) accumulation in mitochondria. Together, these results suggest that ts1 infection-mediated neuronal degeneration in mice may result from activation of ER stress signaling pathways, presumably initiated by perturbation of Ca 2 þ homeostasis. Our findings highlight the importance of the ER stress signaling pathway in ts1 infection-induced neuronal degeneration and death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.