Model Predictive Control (MPC) has its reputation since it can handle multiple inputs and outputs with consideration to constraints. However, this comes at the cost of high computational complexity, which limits MPC to slow dynamic systems. This paper provides an overview of the available methods to accelerate the MPC process. Various parallel computing approaches using different technologies were proposed to speed up the execution of MPC, some of these approaches are focused on building dedicated hardware for MPC using field programmable arrays (FPGA), and others are focused on parallelizing MPC computation using multi-core processors (CPUs) and many-core processors (GPUs). The focus of this survey is to review the available methods for accelerating MPC process. A brief introduction to the theory of MPC is provided first followed by a description of each approach. A comparison between the different methods is presented in terms of complexity and performance followed by a valid application for each approach. Finally, this paper discusses the challenges and requirements of MPC for future applications.
The goal of this research is the development of a driver assistant feature, which can warn the driver in case a pedestrian is in a potential risk due to sudden intention to cross the road. The process of crossing pedestrian is defined as the changing of pedestrian orientation on the curb toward the road. We built a Convolutional Neural Network (CNN) model combined with depth sensing camera to estimate the pedestrian orientation and distance from the vehicle. The model detects the higher human body keypoints in 2D space while the depth info make it possible to translate the points into a 3D space. These info are tracked per pedestrian and any change in the pedestrian moving pattern toward the road is translated to a warning for the driver. The CNN model is end-end trained using different datasets presenting pedestrian in different configurations and scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.