The MS-275 oral formulation on the daily schedule was intolerable at a dose and schedule explored. The q14-day schedule is reasonably well tolerated. Histone deacetylase inhibition was observed in peripheral-blood mononuclear-cells. Based on PK data from the q14-day schedule, a more frequent dosing schedule, weekly x 4, repeated every 6 weeks is presently being evaluated.
Purpose: MS-275 is a histone deacetylase inhibitor that has shown potent and unique anticancer activity in preclinical models.The aims of this phase I trial were to determine the dose-limiting toxicities and maximum tolerated dose of oral MS-275 in humans administered with food on a once weekly schedule and to study the pharmacokinetics of oral MS-275. Experimental Design: Patients with refractory solid tumors and lymphoid malignancies were treated with oral MS-275 on a once weekly schedule for 4 weeks of a 6-week cycle. Samples for pharmacokinetic and pharmacodynamic analyses were collected during cycle 1. Protein acetylation in subpopulations of peripheral blood mononuclear cells was measured using a multivariable flow cytometry assay. Results: A total of 22 patients were enrolled, and 19 were considered evaluable for toxicity. The maximum tolerated dose was 6 mg/m 2 . No National Cancer Institute CommonToxicity Criteria grade 4 toxicities were observed. Dose-limiting grade 3 toxicities were reversible and consisted of hypophosphatemia, hyponatremia, and hypoalbuminemia. Non^dose-limiting grade 3 myelosuppression was also observed. The mean terminal half-life of MS-275 was 33.9 F 26.2 and the T max ranged from 0.5 to 24 h. Although there was considerable interpatient variability in pharmacokinetics, the areaunder the plasma concentrationversus time curveincreasedlinearly withdose. Conclusions: MS-275 is well tolerated at a dose of 6 mg/m 2 administered weekly with food for 4 weeks every 6 weeks. Drug exposure increases linearly with dose, and protein acetylation increased in all the subpopulations of peripheral blood mononuclear cells following MS-275 administration.
BACKGROUND AND PURPOSEHigh plasma levels of fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] were associated with improved outcome in a phase II clinical trial. Low bioavailability of 4-HPR has been limiting its therapeutic applications. This study characterized metabolism of 4-HPR in humans and mice, and to explore the effects of ketoconazole, an inhibitor of CYP3A4, as a modulator to increase 4-HPR plasma levels in mice and to increase the low bioavailability of 4-HPR.EXPERIMENTAL APPROACH4-HPR metabolites were identified by mass spectrometric analysis and levels of 4-HPR and its metabolites [N-(4-methoxyphenyl)retinamide (4-MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR)] were quantified by high-performance liquid chromatography (HPLC). Kinetic analysis of enzyme activities and the effects of enzyme inhibitors were performed in pooled human and pooled mouse liver microsomes, and in human cytochrome P450 (CYP) 3A4 isoenzyme microsomes. In vivo metabolism of 4-HPR was inhibited in mice.KEY RESULTSSix 4-HPR metabolites were identified in the plasma of patients and mice. 4-HPR was oxidized to 4-oxo-4-HPR, at least in part via human CYP3A4. The CYP3A4 inhibitor ketoconazole significantly reduced 4-oxo-4-HPR formation in both human and mouse liver microsomes. In two strains of mice, co-administration of ketoconazole with 4-HPR in vivo significantly increased 4-HPR plasma concentrations by > twofold over 4-HPR alone and also increased 4-oxo-4-HPR levels.CONCLUSIONS AND IMPLICATIONSMice may serve as an in vivo model of human 4-HPR pharmacokinetics. In vivo data suggest that the co-administration of ketoconazole at normal clinical doses with 4-HPR may increase systemic exposure to 4-HPR in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.