By adopting a facile, environmentally benign, solution phase method under ambient conditions, we have successfully synthesized all-inorganic cesium lead halide perovskite 1D rods.
Developing portable, lightweight,
and flexible energy storage systems
has become a necessity with the advent of wearable electronic devices
in our modern society. This work focuses on the fabrication of Co
3
O
4
nanowires on a flexible carbon fabric (CoNW/CF)
substrate by a simple cost-effective hydrothermal route. The merits
of the high surface area of the prepared Co
3
O
4
nanostructures result in an exceptionally high specific capacitance
of 3290 F/g at a scan rate of 5 mV/s, which is close to their theoretical
specific capacitance. Furthermore, a solid-state symmetric supercapacitor
(SSC) based on CoNW/CF (CoNW/CF//CoNW/CF) was fabricated successfully.
The device attains high energy and power densities of 6.7 Wh/kg and
5000 W/kg. It also demonstrates excellent rate capability and retains
95.3% of its initial capacitance after 5000 cycles. Further, the SSC
holds its excellent performance at severe bending conditions. When
a series assembly of four such devices is charged, it can store sufficient
energy to power a series combination of five light-emitting diodes.
Thus, this SSC device based on a three-dimensional coaxial architecture
opens up new strategies for the design of next-generation flexible
supercapacitors.
Feeble white emission with a low Colour Rendering Index (CRI) has become the principal gridlock for the extensive commercialization of phosphor converted white LEDs (pc-WLEDs). Fusion of red, green and blue emitting rare-earth (RE) ions in a suitable host can overcome these drawbacks but the energy migration between multiple RE ions at single excitation wavelength defines the key standpoint in designing such white light emitting phosphors. Apart from the abovementioned obstacles, recently traditional optical temperature sensors based on RE ions have faced difficulties due to their low relative sensitivity and large detection error. Keeping these points in mind, in this work, a series of MgAl2O4:Dy3+,Eu3+ nanophosphors are synthesized among which 2% Dy3+,0.2% Eu3+ doped MgAl2O4 nanophosphors demonstrate strong white emission with CIE co-ordinates of (0.31, 0.33), and high quantum yield (∼67%), which could be directly utilized for pc-WLED based solid state lighting devices. Detailed investigation of PL properties reveals that Eu3+ ions can be well sensitized by Dy3+ under near-ultraviolet excitation of 351 nm. Dexter's theory & Reisfeld's approximation are employed for an in-depth analysis of the inter-RE energy transfer (ET) mechanism, which signposts that the dipole-quadrupole interaction phenomenon is responsible for the ET process from Dy3+ to Eu3+. Additionally, the validated ET plays a pivotal role in demonstrating the self-referencing ratiometric temperature sensor behaviour supported by a distinct high temperature thermal quenching trend between Dy3+ and Eu3+ ions. Hence the obtained nanophosphors are highly promising for utilizing in WLED based solid state lighting and self-referencing ratiometric temperature sensor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.