In tissue engineering, polyurethane-based implants have gained significant traction because of their high compatibility and inertness. The implants therefore show fewer side effects and lasts longer. Also, the mechanical properties can be tuned and morphed into a particular shape, owing to which polyurethanes show immense versatility. In the last 3 years, scientists have devised methods to enhance the strength of and induce dynamic properties in polyurethanes, and these developments offer an immense opportunity to use them in tissue engineering. The focus of this review is on applications of polyurethane implants for biomedical application with detailed analysis of hard tissue implants like bone tissues and soft tissues like cartilage, muscles, skeletal tissues, and blood vessels. The synthetic routes for the preparation of scaffolds have been discussed to gain a better understanding of the issues that arise regarding toxicity. The focus here is also on concerns regarding the biocompatibility of the implants, given that the precursors and byproducts are poisonous.
Determination of health hazards of noise pollution is a challenge for any developing city intersection. The people working at roadside open-air shops or near the congested roads of any intersection face intense noise pollution. It becomes very difficult to efficiently determine the hazards of noise on the health of people living near the intersection. An attempt was made to determine the noise-induced health hazards of the developing city of Bahadurpur, UP, India. The noise levels were monitored over 17 station points of the intersection for three months at different times of the day. Equivalent noise level (Leq) maps were determined within an accuracy of ±4dB. Areas adjacent to intersections indicated noise exposure levels close to 100 dB. Health hazards for the people of the intersection were determined through the testing of auditory and non-auditory health parameters for 100 people. A total of 75–92% of the people who work/live near the noisy intersection were found to be suffering from hearing impairment, tinnitus, sleep disturbance, cardiovascular diseases, hypertension, etc. Whether the recorded health hazards were indeed related to noise exposure was confirmed by testing the health parameters of people from the nearby and less noisy area of Pure Ganga. The nearby site reported mild hazards to the health of the population. An alarming level of hearing impairment was prevalent in the noisy Bahadurpur intersection (79–95%) compared to the same in Pure Ganga (13–30%). The estimated noise-induced health hazards were also compared for noisy and less-noisy study sites using ANOVA statistics. The results suggested that the health hazards reported in the two sites are not similar. Further, the severe hazards to people’s health at the underdeveloped intersection were found to be primarily caused by the intense exposure to noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.