This research focuses on the development of enteric microparticles of lansoprazole in a single step by employing the spray drying technique and studies the effects of variegated formulation/process variables on entrapment efficiency and in vitro gastric resistance. Preliminary trials were undertaken to optimize the type of Eudragit and its various levels. Further trials included the incorporation of plasticizer triethyl citrate and combinations of other polymers with Eudragit S 100. Finally, various process parameters were varied to investigate their effects on microparticle properties. The results revealed Eudragit S 100 as the paramount polymer giving the highest gastric resistance in comparison to Eudragit L 100-55 and L 100 due to its higher pH threshold and its polymeric backbone. Incorporation of plasticizer not only influenced entrapment efficiency, but diminished gastric resistance severely. On the contrary, polymeric combinations reduced entrapment efficiency for both sodium alginate and glyceryl behenate, but significantly influenced gastric resistance for only sodium alginate and not for glyceryl behenate. The optimized process parameters were comprised of an inlet temperature of 150°C, atomizing air pressure of 2 kg/cm2, feed solution concentration of 6% w/w, feed solution spray rate of 3 ml/min, and aspirator volume of 90%. The SEM analysis revealed smooth and spherical shape morphologies. The DSC and PXRD study divulged the amorphous nature of the drug. Regarding stability, the product was found to be stable under 3 months of accelerated and long-term stability conditions as per ICH Q1A(R2) guidelines. Thus, the technique offers a simple means to generate polymeric enteric microparticles that are ready to formulate and can be directly filled into hard gelatin capsules.
The research envisaged focuses on vital impacts of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose (EC) tablets using prednisone as a model drug. Several lubricants and glidants such as magnesium stearate, colloidal SiO2, sodium stearyl fumarate, talc, stearic acid, polyethylene glycol (6000) and glyceryl behenate were investigated to understand their effects on lag time by changing their concentrations in outer coat. Further, the effects of hydrophilic additives on lag time were examined for hydroxypropylmethylcellulose (E5), hydroxypropylcellulose (EF and SSL), povidone (K30), copovidone, polyethylene glycol (4000), lactose and mannitol. In vitro drug release testing revealed that each selected lubricant/glidant, if present even at concentration of 0.25% w/w, significantly reduced the lag time of press coated tablets. Specifically, colloidal SiO2 and/or magnesium stearate were detrimental while other lubricants/glidants were relatively less injurious. Among hydrophilic additives, freely water soluble fillers had utmost influence in lag time, whereas, comparatively less impact was observed with polymeric binders. Concisely, glidant and lubricant should be chosen to have minimal impact on lag time and further judicious selection of hydrophilic additives should be exercised for modulating lag time of pulsatile release formulations.
Dipyridamole (DPL) is a weakly basic BCS class II drug which precipitates upon entering into intestine leading to pH dependant and variable absorption. Thus, research envisaged focuses on developing formulations that maintain supersaturation following upon acid to neutral pH transition. In an endeavor to accomplish the objective, solid dispersion (SD) with hydroxypropylmethyl cellulose (HPMC) and polyvinylpyrrolidone (PVP) was prepared by a quench cooling method. The three molecular weight grades of HPMC (HPMC E5, HPMC E15 and HPMC E50) and two molecular weight grades of PVP (PVP K30 and PVP K90) were investigated to observe effect of increasing molecular weight on stabilizing DPL supersaturated solutions. Equilibrium solubility studies revealed increase in solubility with both HPMC and PVP with greater benefit from HPMC. In vitro supersaturated dissolution results demonstrated that HPMC formulations provided greater degree and extent of supersaturation as compared to PVP formulations. The formulation with HPMC E50 provided maximum stabilization to supersaturation upon acid to neutral pH transition. Moreover, the effect of increase in molecular weight was more pronounced in HPMC rather than PVP. Stronger interactions were observed for DPL with HPMC, while no interaction was observed with PVP which was evident from Fourier transform infra-red studies. Differential scanning calorimetry and powder X-ray diffraction studies revealed the amorphous state of DPL in SD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.