In an agricultural-based country like India, farming and farming activities play a vital role in the growth of the economy as it is the main source of GNI (Gross National Income). This dependence of GNI on agriculture makes it important to address the issues faced by the farmers. The main area of concern for farmers revolves around crops and livestock. Precise farming techniques like cattle counting and crop disease detection are the need of the hour. The introduction of computer vision and deep learning has enabled us to make improvements in farming techniques. To accomplish this, a computer vision-based system is proposed which will be implemented using ResNet and YOLOv3-tiny. The proposed system will take images and videos as input and run them on the inference. The output will be updated in the database and the farmer will be notified in case of any inconsistency. The detailed report can be accessed by government agencies. The system will increase efficiency in farming processes like crop monitoring, livestock tracking, crop disease detection by providing fast and efficient solutions for the problems faced by the farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.