Chronic immune activation is a major complication of antiretroviral therapy (ART) for HIV infection and can cause a devastating immune reconstitution inflammatory syndrome (IRIS) in the brain. The mechanism of T-cell activation in this population is not well understood. We found HIV-Tat protein and IL-17-expressing mononuclear cells in the brain of an individual with IRIS. Tat was also present in the CSF of individuals virologically controlled on ART. Hence we examined if Tat protein could directly activate T cells. Tat transcriptionally dysregulated 94 genes and induced secretion of 11 cytokines particularly activation of IL-17 signaling pathways supporting the development of a proinflammatory state. Tat increased IL-17 transcription and secretion in T cells. Tat entered the T cells rapidly by clathrin-mediated endocytosis and localized to both the cytoplasm and the nucleus. Tat activated T cells through a nonclassical pathway dependent upon vascular endothelial growth factor receptor-2 and downstream secondary signaling pathways but independent of the T-cell receptor. However, Tat stimulation of T cells did not induce T-cell proliferation but increased viral infectivity. This study demonstrates Tat's role as a virulence factor, by driving T-cell activation and contributing to IRIS pathophysiology. This supports the necessity of an anti-Tat therapy in conjunction with ART and identifies multiple targetable pathways to prevent Tat-mediated T-cell activation.
Aging is associated with impaired tissue regeneration. Stem cell number and function have been identified as potential culprits. We first demonstrate a direct correlation between stem cell number and time to bone fracture union in a human patient cohort. We then devised an animal model recapitulating this age-associated decline in bone healing and identified increased cellular senescence caused by a systemic and local proinflammatory environment as the major contributor to the decline in skeletal stem/progenitor cell (SSPC) number and function. Decoupling age-associated systemic inflammation from chronological aging by using transgenic Nfkb1KO mice, we determined that the elevated inflammatory environment, and not chronological age, was responsible for the decrease in SSPC number and function. By using a pharmacological approach inhibiting NF-κB activation, we demonstrate a functional rejuvenation of aged SSPCs with decreased senescence, increased SSPC number, and increased osteogenic function. Unbiased, whole-genome RNA sequencing confirmed the reversal of the aging phenotype. Finally, in an ectopic model of bone healing, we demonstrate a functional restoration of regenerative potential in aged SSPCs. These data identify aging-associated inflammation as the cause of SSPC dysfunction and provide mechanistic insights into its reversal. regeneration | skeletal stem cell | senescence | inflammation | bone healing
Intraoperative leak testing has no correlation with leak due to laparoscopic sleeve gastrectomy and is not predictive of the later development of staple line leak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.