The present study reports the upcycling process of waste plastics into value-added product graphene nanosheets (GNs) and their subsequent applications in dye sensitized solar cells (DSSCs) and supercapacitors. Bentonite nanoclay has been used as an agent for the degradation of waste plastics with two step pyrolysis processes at 450 °C and 945 °C in an inert atmosphere of N2 gas to obtain GNs. The GNs with few layers were confirmed by the RAMAN spectroscopy, XRD and HRTEM analyses. Further, FT-IR and EDX analyses also performed for the identification and quantitative analysis of functional groups in GNs. The GNs thus synthesized from plastic waste have been used for the fabrication of DSSCs and supercapacitors. The DSSC fabrication with GNs as part of photo-anode with polymeric electrolyte showed a high fill factor of 86.4% and high Voc of 0.77 V, which were also supported by the computational findings. On the other hand, the utilization of GNs as an active layer material of supercapacitor electrodes offered a high specific capacitance of 398 F/g with a scan rate of 0.005 V/s. The supercapacitor also exhibited significant energy density (Ed) and power density (Pd) of 38 Wh/kg and 1009.74 W/kg, respectively. Thus, the process illustrated the utility of waste plastics upcycling for conservation of EEE i.e., ecology, economy and energy for better tomorrow.
Nanomaterials have gained a lot of interest due to their application in various fields. Tin oxide (SnO 2 ) is an important n-type wide band-gap semiconductor in the field of gas sensing devices due to its chemical and mechanical stability. Here, SnO 2 nanoparticles were synthesized by a simple chemical co-precipitation method followed by annealing the obtained nanoparticles at different temperatures. Several characterization techniques like powder X-ray Diffraction, Scanning Electron Microscope, Energy-Dispersive X-Ray spectroscopy, and Ultraviolet-Visible spectroscopy, Fourier Transform Infrared Spectroscopy were carried out to analyze the structure, size, morphology, elemental composition and optical properties of the prepared SnO 2 nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.