Recent years have witnessed utilization of modern machine learning approaches for predicting properties of material using available datasets. However, to identify potential candidates for material discovery, one has to systematically...
<div>Recent years have witnessed utilization of modern machine learning approaches for predicting properties of material using available datasets. However, to identify potential candidates for material discovery, one has to systematically scan through a large chemical space and subsequently calculate the properties of all such samples. On the other hand, generative methods are capable of efficiently sampling the chemical space and can generate molecules/materials with desired properties. In this study, we report a deep learning based inorganic material generator (DING) framework consisting of a generator module and a predictor module. The generator module is developed based upon conditional variational autoencoders (CVAE) and the predictor module consists of three deep neural networks trained for predicting enthalpy of formation, volume per atom and energy per atom chosen to demonstrate the proposed method. The predictor and generator modules have been developed using a one hot key representation of the material composition. A series of tests were done to examine the robustness of the predictor models, to demonstrate the continuity of the latent material space, and its ability to generate materials exhibiting target property values. The DING architecture proposed in this paper can be extended to other properties based on which the chemical space can be efficiently explored for interesting materials/molecules.</div><div><br></div>
In 2015, 391,000 people were injured due to distracted driving in the US. One of the major reasons behind distracted driving is the use of cell-phones, accounting for 14% of fatal crashes. Social media applications have enabled users to stay connected, however, the use of such applications while driving could have serious repercussions - often leading the user to be distracted from the road and ending up in an accident. In the context of impression management, it has been discovered that individuals often take a risk (such as teens smoking cigarettes, indulging in narcotics, and participating in unsafe sex) to improve their social standing. Therefore, viewing the phenomena of posting distracted driving posts under the lens of self-presentation, it can be hypothesized that users often indulge in risk-taking behavior on social media to improve their impression among their peers. In this paper, we first try to understand the severity of such social-media-based distractions by analyzing the content posted on a popular social media site where the user is driving and is also simultaneously creating content. To this end, we build a deep learning classifier to identify publicly posted content on social media that involves the user driving. Furthermore, a framework proposed to understand factors behind voluntary risk-taking activity observes that younger individuals are more willing to perform such activities, and men (as opposed to women) are more inclined to take risks. Grounding our observations in this framework, we test these hypotheses on 173 cities across the world. We conduct spatial and temporal analysis on a city-level and understand how distracted driving content posting behavior changes due to varied demographics. We discover that the factors put forth by the framework are significant in estimating the extent of such behavior.
<div>Recent years have witnessed utilization of modern machine learning approaches for predicting properties of material using available datasets. However, to identify potential candidates for material discovery, one has to systematically scan through a large chemical space and subsequently calculate the properties of all such samples. On the other hand, generative methods are capable of efficiently sampling the chemical space and can generate molecules/materials with desired properties. In this study, we report a deep learning based inorganic material generator (DING) framework consisting of a generator module and a predictor module. The generator module is developed based upon conditional variational autoencoders (CVAE) and the predictor module consists of three deep neural networks trained for predicting enthalpy of formation, volume per atom and energy per atom chosen to demonstrate the proposed method. The predictor and generator modules have been developed using a one hot key representation of the material composition. A series of tests were done to examine the robustness of the predictor models, to demonstrate the continuity of the latent material space, and its ability to generate materials exhibiting target property values. The DING architecture proposed in this paper can be extended to other properties based on which the chemical space can be efficiently explored for interesting materials/molecules.</div><div><br></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.