Aggregation-induced enhanced emission (AIEE) is reported for 1-cyano-trans-1,2-bis-(4-carbazolyl)phenylethylene (CN-CPE). The weak luminescence of dilute CN-CPE solutions is enhanced upon aggregate formation into 2-3 μm sized crystals. In contrast to general observations, crystal formation of CN-CPE causes a blue-shift in emission and enhances the intensity. X-ray crystallographic analysis revealed that key factors causing high luminescence efficiency in the crystal are a lack of strong cofacial π-π alignment and the existence of the strong supramolecular interactions due to the intermolecular H-bonding. These factors seem to be responsible for the AIEE phenomenon as molecules of CN-CPE are held in a rigid twisted conformation, thereby increasing the fluorescence intensity in the solid or aggregated states. Accordingly, conformational twisting in the crystal packing process may be responsible for the unusual emission blue-shift in the aggregate.
New polymers that are stable in harsh environments (high salinity/hardness and high temperature) are in high demand because of the need for chemical EOR in oil reservoirs with these conditions. Commonly used partially hydrolyzed polyacrylamides (HPAM) have been successfully used in the field for decades, but they hydrolyze at high temperature and eventually precipitate in the presence of high concentrations of divalent cations. This paper mainly focuses on rheology and transport behavior of scleroglucan (non-ionic polysaccharide) and N-vinylpyrrolidone (NVP)-polyacrylamide (AM) co-polymer. The rigid, rod-like, triple helical structure of scleroglucan imparts exceptional stability and its non-ionic functionality makes it insensitivity to salinity and hardness. By a different mechanism, NVP in modified HPAM protects the polymer's amide group against thermal hydrolysis, i.e., by sterically hindering the amide group. This allows maintaining high viscosity even in high salinity brines at high temperature. Both scleroglucan and NVP co- or ter-polymers show good filterability and transport properties in sandstone and carbonate cores at high temperature and in brine with high salinity and hardness. Therefore, both polymers are promising candidates for polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding in hard brine at high temperature, but must be evaluated under specific reservoir conditions.
Summary
Geochemical modeling was used to design and conduct a series of alkaline/surfactant/polymer (ASP) coreflood experiments to measure the surfactant retention in limestone cores using sodium hydroxide (NaOH) as the alkali. Surfactant/polymer (SP) coreflood experiments were conducted under the same conditions for comparison. NaOH has been used for ASP floods of sandstones, but these are the first experiments to test it for ASP floods of limestones. Two studies performed under different reservoir conditions showed that NaOH significantly reduced the surfactant retention in Indiana Limestone. An ASP solution with 0.3 wt% NaOH has a pH of approximately 12.6 at 25°C. The high pH increases the negative surface charge of the carbonate, which favors lower adsorption of anionic surfactants. Another advantage of NaOH is that low concentrations of only approximately 0.3 wt% can be used because of its low molecular weight and its low consumption in limestones. Most reservoir carbonates contain gypsum or anhydrite, and therefore sodium carbonate (Na2CO3) will be consumed by the precipitation of calcium carbonate (CaCO3). As shown in the two studies, NaOH can be used in limestone reservoirs containing gypsum or anhydrite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.