Given increasing numbers of patients who are undergoing exome or genome sequencing, it is critical to establish tools and methods to interpret the impact of genetic variation. While the ability to predict deleteriousness for any given variant is limited, missense variants remain a particularly challenging class of variation to interpret, since they can have drastically different effects depending on both the precise location and specific amino acid substitution of the variant. In order to better evaluate missense variation, we leveraged the exome sequencing data of 60,706 individuals from the Exome Aggregation Consortium (ExAC) dataset to identify sub-genic regions that are depleted of missense variation. We further used this depletion as part of a novel missense deleteriousness metric named MPC. We applied MPC to de novo missense variants and identified a category of de novo missense variants with the same impact on neurodevelopmental disorders as truncating mutations in intolerant genes, supporting the value of incorporating regional missense constraint in variant interpretation.
Genome-wide association studies have successfully discovered thousands of common variants associated with human diseases and traits, but the landscape of rare variation in human disease has not been explored at scale. Exome sequencing studies of population biobanks provide an opportunity to systematically evaluate the impact of rare coding variation across a wide range of phenotypes to discover genes and allelic series relevant to human health and disease. Here, we present results from systematic association analyses of 3,700 phenotypes using single-variant and gene tests of 281,850 individuals in the UK Biobank with exome sequence data. We find that the discovery of genetic associations is tightly linked to frequency as well as correlated with metrics of deleteriousness and natural selection. We highlight biological findings elucidated by these data and release the dataset as a public resource alongside a browser framework for rapidly exploring rare variant association results.
Upstream open reading frames (uORFs) are important tissue-specific cis -regulators of protein translation. Although isolated case reports have shown that variants that create or disrupt uORFs can cause disease, genetic sequencing approaches typically focus on protein-coding regions and ignore these variants. Here, we describe a systematic genome-wide study of variants that create and disrupt human uORFs, and explore their role in human disease using 15,708 whole genome sequences collected by the Genome Aggregation Database (gnomAD) project. We show that 14,897 variants that create new start codons upstream of the canonical coding sequence (CDS), and 2,406 variants disrupting the stop site of existing uORFs, are under strong negative selection. Furthermore, variants creating uORFs that overlap the CDS show signals of selection equivalent to coding loss-of-function variants, and uORF-perturbing variants are under strong selection when arising upstream of known disease genes and genes intolerant to loss-of-function variants. Finally, we identify specific genes where perturbation of uORFs is likely to represent an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in families with neurofibromatosis. Our results highlight uORF-perturbing variants as an important and under-recognised functional class that can contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data to study the deleteriousness of specific classes of non-coding variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.