Extracellular vesicles (EVs) play important roles in diabetes mellitus (DM) via connecting the immune cell response to tissue injury, besides stimulation to muscle insulin resistance, while DM is associated with increased risks for major cardiovascular complications. Under DM, chronic hyperglycemia, and subsequent increase in the production of reactive oxygen species (ROS) further lead to cardiac growth remodeling and dysfunction. The purinergic drug ticagrelor is a P2Y12 receptor antagonist. Although it is widely used in cardioprotection, the underlying molecular mechanism of its inhibitory effect on diabetic cardiomyopathy is poorly elucidated. Here, we aimed to understand how ticagrelor exerts its cardio-regulatory effects. For this purpose, we investigated the anti-oxidative and cardioprotective effect of EVs derived from ticagrelor-pretreated cardiomyocytes under DM conditions. To mimic DM in cardiomyocytes, we used high glucose incubated H9c2-cells (HG). HG cells were treated with EVs, which were derived from either ticagrelor-pretreated or untreated H9c2-cells. Our results demonstrated that ticagrelor-pretreated H9c2-derived EVs significantly decreased the hyperglycemia-induced aberrant ROS production, prevented the development of apoptosis and ER stress, and alleviated oxidative stress associated miRNA-expression profile. Importantly, EVs derived from ticagrelor-pretreated H9c2-cells enhanced endothelial cell migration and tube formation, suggesting a modulation of the EV profile in cardiomyocytes. Our data, for the first time, indicate that ticagrelor can exert an important regulatory effect on diabetic cardiomyopathy through extracellular vesicular modulation behind its receptor-inhibition-related effects.
Purpose Metabolic syndrome (MetS) became a tremendous public health burden in the last decades. Store-operated calcium entry (SOCE) is a unique mechanism that causes a calcium influx, which is triggered by calcium store depletion. MetS-induced alterations in cardiac calcium signaling, especially in SOCE are still unclear. Therefore, we aim to examine the possible role of SOCE and its components (STIM1 and Orai1) in the MetS-induced cardiac remodeling. Methods We used male, adult (12 weeks) Wistar albino rats (n = 20). Animals were randomly divided into two groups which were: control (C) and MetS. We gave 33% sucrose solution to animals instead of water for 24 weeks to establish MetS model. In the end, papillary muscle function was evaluated, and various electrophysiological analyses were made in isolated cardiomyocytes. Additionally, STIM1 and Orai1 protein and mRNA expressions were analyzed. Results We observed a deterioration in contractility in MetS animals and demonstrated the contribution of SOCE by applying a SOCE inhibitor (BTP2). Calcium spark frequency was increased while its amplitude was decreasing in MetS hearts, which was reversed after SOCE inhibition. The amplitude of transient calcium changes in the MetS group was decreased, and it decreased further BTP2 application. Both protein and mRNA levels of STIM1 and Orai1 were increased significantly in MetS hearts. Conclusion Current data indicate the significant contribution of SOCE to cardiac calcium handling in the MetS model. We think MetS-induced SOCE activation is a compensation mechanism that is required for the continuum of proper cardiac functioning, although the activation can also cause cardiac hypertrophy.
Exosomes play important roles in Diabetes Mellitus (DM) via connecting the immune cell response to tissue injury, besides stimulation to muscle insulin resistance, while DM is associated with increase risks for major cardiovascular complications. Under DM, chronic hyperglycemia and subsequent augmentation of reactive oxygen species (ROS) further lead to cardiac growth remodeling and dysfunction. Although a P2Y12 receptor inhibitor, ticagrelor, is widely used in cardioprotection, its inhibitory effect on diabetic cardiomyopathy is poorly elucidated. Here, we aimed to investigate the anti-oxidative and cardioprotective effect of exosomes, derived from ticagrelor pretreated-cardiomyocytes. To mimic DM in cardiomyocytes, we used high glucose incubated H9c2-cells (HG). HG cells were treated with exosomes, which were derived from either ticagrelor-pretreated or untreated H9c2-cells. Our results demonstrated that exosomes derived from ticagrelor-pretreated H9c2-cells significantly decreased the aberrant ROS production, prevented the development of apoptosis and ER stress under hyperglycemia, and alleviated oxidative stress associated with a miRNA-expression profile. Importantly, exosomes derived from ticagrelor-pretreated H9c2-cells enhanced endothelial cell migration and tube formation, suggesting a modulation of the exosome profile in cardiomyocytes. Our data, for the first time, indicate that ticagrelor can exert an important regulatory effect on diabetic cardiomyopathy through exosomal modulation behind its receptor-inhibitor related action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.