This paper presents a novel scalable physical implementation method for high-speed Triple Modular Redundant (TMR) digital integrated circuits in radiation-hard designs. The implementation uses a distributed placement strategy compared to a commonly used bulk 3-bank constraining method. TMR netlist information is used to optimally constrain the placement of both sequential cells and combinational cells. This approach significantly reduces routing complexity, net lengths and dynamic power consumption with more than 60% and 20% respectively. The technique was simulated in a 65 nm Complementary Metal-Oxide Semiconductor (CMOS) technology.
This paper presents a novel physical implementation methodology for high-speed Triple Modular Redundant (TMR) digital integrated circuits for harsh radiation environment applications. An improved distributed approach is presented to constrain redundant branches of Triple Modular Redundant (TMR) digital logic cells using repetitive, interleaved micro-floorplans. To optimally constrain the placement of both sequential and combinational cells, the TMR netlist is used to segment the the logic into unrelated groups allowing sharing without compromising reliability. The technique was evaluated in a 65 nm bulk CMOS technology and a comparison is made to conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.