There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.
Summary1. Cloud cover affects carbon exchange between biota and the atmosphere. Recent studies have demonstrated that an increase in the diffuse radiation fraction enhances the photosynthetic efficiency of canopies. Although the exact mechanism behind this effect is not clear, a more even distribution of light among leaves across the vertical profile of the canopy is considered to be the most important cause of this difference. 2. To test this hypothesis, the net ecosystem production (NEP) of a Norway spruce forest (30-year-old) was measured under cloudy and sunny skies by the eddy covariance method. In parallel, measurements of the diurnal courses of gas exchange and chlorophyll fluorescence parameters were made in the upper sun (5th whorl; 1-year-old needles), middle (8th and 10th whorl; 1-and 2-year-old needles) and lower shade (15th whorl; >2-year-old needles) shoots. 3. The higher diffuse radiation fraction during cloudy days resulted in significantly higher ecosystem carbon uptake than at corresponding incident photosynthetic photon flux density on sunny days. Our shoot-level data show that shoots from deep within the canopy contribute substantially to the overall carbon balance during cloudy days. But, although shade-adapted shoots had a markedly positive carbon balance over a 24-h period on cloudy days, their performance was impaired on sunny days contributing only a marginal or even negative carbon balance from the middle and shaded parts of the canopy. The uppermost sun shoots contributed 78% of the total carbon assimilated during a sunny day, but only 43% during a cloudy day. 4. In addition, afternoon depression of canopy NEP and CO 2 assimilation rates of the uppermost shoots (5th and 8th whorl) occurred in response to irradiance on sunny days, characterized by significant decreases in CO 2 uptake and apparent quantum yield; however, this depression did not occur under cloudy conditions. Stomatal and non-stomatal regulations of carbon assimilation in the afternoon are discussed.
Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.