Natural killer (NK) cells are classically viewed as lymphocytes that provide innate surveillance against virally-infected cells and tumor cells through release of cytolytic mediators and IFN-γ. In humans, blood CD56dim NK cells specialize in lysis of cell targets1. In lymph nodes, CD56bright NK cells secrete IFN-γ cooperating with dendritic cells (DC) and T cells in the generation of adaptive responses1, 2. Here we report the characterization of a human NK cell subset located in mucosa-associated lymphoid tissues (MALT), such as tonsils and Payer’s patches, which is hard-wired to secrete interleukin (IL)-22, IL-26, and leukaemia inhibitory factor (LIF). These NK cells, which we refer to as NK-22 cells, are triggered by acute exposure to IL-23. In vitro, NK-22-secreted cytokines stimulate epithelial cells to secrete IL-10, proliferate and express a variety of mitogenic and anti-apoptotic molecules. NK-22 cells are also found in mouse MALT and appear in the small intestine lamina propria during bacterial infection suggesting that NK-22 cells provide an innate source of IL-22 that may help constrain inflammation and protect mucosal sites.
The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2 mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.
Natural killer-22 (NK-22) cells are a human NK cell subset situated in mucosal-associated lymphoid tissues that specialize in IL-22 secretion in response to IL-23. Here we investigated the cytokine requirements for NK-22 cell expansion. IL-7 maintained the survival of NK-22 cells and IL-22 production in response to IL-23 but was insufficient to induce robust expansion. Proliferation of NK-22 cells was increased markedly by adding either IL-1β or IL-2 to IL-7 and was even stronger in the presence of IL-1β plus IL-2. In contrast to IL-7, continuous culture in IL-1β and IL-2 modified NK-22 cytokine profiles. IL-1β promoted constitutive IL-22 secretion rather than acute IL-22 production in response to IL-23 and induced IL-17 in some cells. IL-2 reduced secretion of IL-22 and IL-17, increasing production of IFN-γ and leukemia inhibitory factor. Functional deviation toward IFN-γ production also was induced by continuous culture in IL-23. These results demonstrate the functional plasticity of NK-22 cells, which may allow flexible responses to different pathogens. Finally, we found that NK-22 cells released the B-cell survival factor, B-cell activating factor belonging to the TNF family (BAFF), suggesting a potential role of NK-22 cells in promoting B-cell-mediated mucosal immunity.B-cell activating factor belonging to the TNF family | IL-22 | mucosal immunity | natural killer cell
Macrophage colony stimulating factor (MCSF) influences proliferation and survival of mononuclear phagocytes through the CSF-1 receptor. The DAP12 adaptor protein, which transduces signals emanating from various myeloid receptors, is critical for mononuclear phagocyte function. DAP12-mutant mice and humans show defects in osteoclasts and microglia and exhibit brain and bone abnormalities. Here, we demonstrated that DAP12 deficiency impairs MCSF-induced macrophage proliferation and survival in vitro. In addition, DAP12-deficient mice show fewer microglia in defined central nervous system areas, and DAP12-deficient progenitors regenerate myeloid cells inefficiently following BM transplantation. MCSF-CSF1-R signaling induced stabilization and nuclear translocation of β-catenin, which activates cell cycle genes. DAP12 was essential for phosphorylation and nuclear accumulation of β-catenin. These results outline a mechanistic explanation for the multiple defects in DAP12-deficient mononuclear phagocytes.
Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.