Brain–computer interfaces (BCIs) can help people with limited motor abilities to interact with their environment without external assistance. A major challenge in electroencephalogram (EEG)-based BCI development and research is the cross-subject classification of motor imagery data. Due to the highly individualized nature of EEG signals, it has been difficult to develop a cross-subject classification method that achieves sufficiently high accuracy when predicting the subject’s intention. In this study, we propose a multi-branch 2D convolutional neural network (CNN) that utilizes different hyperparameter values for each branch and is more flexible to data from different subjects. Our model, EEGNet Fusion, achieves 84.1% and 83.8% accuracy when tested on the 103-subject eegmmidb dataset for executed and imagined motor actions, respectively. The model achieved statistically significantly higher results compared with three state-of-the-art CNN classifiers: EEGNet, ShallowConvNet, and DeepConvNet. However, the computational cost of the proposed model is up to four times higher than the model with the lowest computational cost used for comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.