Cloud-point curves by DSC measurements at different
scanning rates on solutions of two
samples of poly(vinyl methyl ether) in water show two minima in a
temperature−composition plot. The
significance of the data was confirmed by static measurements of the
coexisting-phase compositions and
phase-volume ratios. A thermodynamic analysis in terms of a
strongly concentration-dependent
interaction parameter leads to the conclusion that the system
H2O/PVME exhibits so-called type III
behavior. For polymers of infinite molar mass, such behavior is
characterized by the occurrence of two
off-zero critical concentrations, in addition to the usual zero
critical concentration marking the ϑ state.
An analysis is made of the distribution function and its moments for a linear combination of three randomly chosen orthogonal components of the so-called radius of gyration of an unrestricted random-flight chain, and certain averages of moments are obtained of the three-dimensional distribution W (L12L22L32), where L1 ≤ L2 ≤ L3 are the orthogonal components of the radius of gyration along the principal axes of inertia of the chain. The strong departures of the chain shape from spherical symmetry indicated by these results are confirmed and complemented by Monte Carlo studies of unrestricted random walks on a simple cubic lattice. A surprisingly high ratio of principal components is found for chains with 50 and 100 bonds, 〈L32〉: 〈L22〉: 〈L12〉 ≃ 11.7:2.7:1.
Equilibrium swelling of networks capable of separating into a highly swollen and a collapsed phase is discussed on the basis of a concentration-dependent pair interaction parameter. Classic rules, to be obeyed by the various binodals and their metastable and unstable extensions, rationalize the experimentally accessible portions of the phase diagram and are covered by a simple model yielding acceptable parameter values when fitted to swelling data on the system water/polyW-isopropylacrylamide). The description of the solvent/network binodal is good, but the predicted location of the LCST miscibility gap for linear chains deviates considerably from the measured cloud points. It is probable that linear and branched chains do not differ much in enthalpic contributions to the interaction parameter but deviate appreciably in the entropic terms. This feature offers an acceptable explanation for the discrepancy.
It is demonstrated that the collapse of gels of
radiation cross-linked poly(vinyl methyl ether)
swollen in water is a truly discontinuous process obeying classic
thermodynamic principles. The
phenomenon can further be shown to be related to the relevant type of
limiting critical demixing of
solutions of the corresponding non-cross-linked polymer. There are
three such types, including “classic”
ϑ behavior, and they can also be recognized in the swelling behavior
of the cross-linked analogue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.