a-Tocopheryl succinate (a-TOS) is a selective inducer of apoptosis in cancer cells, which involves the accumulation of reactive oxygen species (ROS). The molecular target of a-TOS has not been identified. Here, we show that a-TOS inhibits succinate dehydrogenase (SDH) activity of complex II (CII) by interacting with the proximal and distal ubiquinone (UbQ)-binding site (Q P and Q D , respectively). This is based on biochemical analyses and molecular modelling, revealing similar or stronger interaction energy of a-TOS compared to that of UbQ for the Q P and Q D sites, respectively. CybL-mutant cells with dysfunctional CII failed to accumulate ROS and underwent apoptosis in the presence of a-TOS. Similar resistance was observed when CybL was knocked down with siRNA. Reconstitution of functional CII rendered CybL-mutant cells susceptible to a-TOS. We propose that a-TOS displaces UbQ in CII causing electrons generated by SDH to recombine with molecular oxygen to yield ROS. Our data highlight CII, a known tumour suppressor, as a novel target for cancer therapy.
Purpose: Vitamin E analogues are potent novel anticancer drugs. The purpose of this study was to elucidate the cellular target by which these agents, represented by a-tocopoheryl succinate (a-TOS), suppress tumors in vivo, with the focus on the mitochondrial complex II (CII). Experimental Design: Chinese hamster lung fibroblasts with functional, dysfunctional, and reconstituted CII were transformed using H-Ras. The cells were then used to form xenografts in immunocompromized mice, and response of the cells and the tumors to a-TOS was studied. Results: The CII-functional and CII-reconstituted cells, unlike their CII-dysfunctional counterparts, responded to a-TOS by reactive oxygen species generation and apoptosis execution. Tumors derived from these cell lines reciprocated their responses to a-TOS. Thus, growth of CII-functional and CII-reconstituted tumors was strongly suppressed by the agent, and this was accompanied by high level of apoptosis induction in the tumor cells. On the other hand, a-TOS did not inhibit the CII-dysfuntional tumors. Conclusions: We document in this report a novel paradigm, according to which the mitochondrial CII, which rarely mutates in human neoplasias, is a plausible target for anticancer drugs from the group of vitamin E analogues, providing support for their testing in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.