Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO 3 ) from 3-phosphoadenosine 5-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-Osulfotransferase isoform 1 at 2.5-Å resolution in a binary complex with 3-phosphoadenosine 5-phosphate. This structure reveals residues critical for 3-phosphoadenosine 5-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.
The gene for human hydroxysteroid sulfotransferase (SULT2B1) encodes two peptides, SULT2B1a and SULT2B1b, that differ only at their amino termini. SULT2B1b has a predilection for cholesterol but is also capable of sulfonating pregnenolone, whereas SULT2B1a preferentially sulfonates pregnenolone and only minimally sulfonates cholesterol. We have determined the crystal structure of SULT2B1a and SULT2B1b bound to the substrate donor product 3 -phosphoadenosine 5 -phosphate at 2.9 and 2.4 Å, respectively, as well as SULT2B1b in the presence of the acceptor substrate pregnenolone at 2.3 Å. These structures reveal a different catalytic binding orientation for the substrate from a previously determined structure of hydroxysteroid sulfotransferase (SULT2A1) binding dehydroepiandrosterone. In addition, the amino-terminal helix comprising residues Asp 19 to Lys 26 , which determines the specificity difference between the SULT2B1 isoforms, becomes ordered upon pregnenolone binding, covering the substrate binding pocket.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.