Six raw agricultural crops (carrots, field corn, onions, rice, spinach, and tomatoes) were collected from major U.S. growing areas uncontaminated by human activities other than normal agricultural practices. Handling, preparation, and analysis of the 1215 samples were performed under carefully controlled conditions. Cadmium and lead were determined by differential pulse anodic stripping voltammetry and
The purpose of the current study was to develop a LC-MS n method for the analysis of pyrrolizidine alkaloids (PAs) in comfrey. Published data presents an extensive list of PAs and their N-oxides present in comfrey. However, standards are not commercially available for any of the PAs typically present in comfrey. Those PAs that are not stereoisomers were readily resolved on a C 18 column using a water-acetonitrile gradient as the mobile phase. The use of a selective technique, LC-MS/MS, allowed us to identify groups of PAs and their N-oxides, as well as identify the number of PAs present in each group, including those that were not completely resolved chromatographically.
Four As compounds were successfully separated and detected by single-column ion chromatography with inductively coupled plasma (ICP) mass spectrometric detection. The mass spectral interferent ArCl+ was reduced by chromatographically resolving chloride from the negatively charged arsenic species. Determination of four As species was investigated in urine, club soda and wine. Detection limits of 0.16 ng of As(III), 0.26 ng of As(v), 0.073 ng of dimethylarsinic acid (DMA) and 0.18 ng of methylarsonic acid (MMA) in wine were obtained. Sensitivity was further improved by using an He-Ar mixed gas ICP as the ionization source. However, the intensity of the ArCl+ interference was also increased using this plasma. Detection limits of 0.063 ng of As(III), 0.037 ng of As(v), 0.032 ng of DMA and 0.080 ng of MMA in club soda were achieved using the He-Ar plasma source. Similar limits of detection were found in urine and wine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.