IntroductionOver 80% of the nearly 1 million men diagnosed with prostate cancer annually worldwide present with localised or locally advanced non-metastatic disease. Risk stratification is the cornerstone for clinical decision making and treatment selection for these men. The most widely applied stratification systems use presenting prostate-specific antigen (PSA) concentration, biopsy Gleason grade, and clinical stage to classify patients as low, intermediate, or high risk. There is, however, significant heterogeneity in outcomes within these standard groupings. The International Society of Urological Pathology (ISUP) has recently adopted a prognosis-based pathological classification that has yet to be included within a risk stratification system. Here we developed and tested a new stratification system based on the number of individual risk factors and incorporating the new ISUP prognostic score.Methods and FindingsDiagnostic clinicopathological data from 10,139 men with non-metastatic prostate cancer were available for this study from the Public Health England National Cancer Registration Service Eastern Office. This cohort was divided into a training set (n = 6,026; 1,557 total deaths, with 462 from prostate cancer) and a testing set (n = 4,113; 1,053 total deaths, with 327 from prostate cancer). The median follow-up was 6.9 y, and the primary outcome measure was prostate-cancer-specific mortality (PCSM). An external validation cohort (n = 1,706) was also used. Patients were first categorised as low, intermediate, or high risk using the current three-stratum stratification system endorsed by the National Institute for Health and Care Excellence (NICE) guidelines. The variables used to define the groups (PSA concentration, Gleason grading, and clinical stage) were then used to sub-stratify within each risk category by testing the individual and then combined number of risk factors. In addition, we incorporated the new ISUP prognostic score as a discriminator. Using this approach, a new five-stratum risk stratification system was produced, and its prognostic power was compared against the current system, with PCSM as the outcome. The results were analysed using a Cox hazards model, the log-rank test, Kaplan-Meier curves, competing-risks regression, and concordance indices. In the training set, the new risk stratification system identified distinct subgroups with different risks of PCSM in pair-wise comparison (p < 0.0001). Specifically, the new classification identified a very low-risk group (Group 1), a subgroup of intermediate-risk cancers with a low PCSM risk (Group 2, hazard ratio [HR] 1.62 [95% CI 0.96–2.75]), and a subgroup of intermediate-risk cancers with an increased PCSM risk (Group 3, HR 3.35 [95% CI 2.04–5.49]) (p < 0.0001). High-risk cancers were also sub-classified by the new system into subgroups with lower and higher PCSM risk: Group 4 (HR 5.03 [95% CI 3.25–7.80]) and Group 5 (HR 17.28 [95% CI 11.2–26.67]) (p < 0.0001), respectively. These results were recapitulated in the testing set and remain...
Though associated with drug resistance, enhanced drug efflux, and decreased drug accumulation in cell lines, the role of this protein in clinical resistance has yet to be determined.
Objective To examine variation in the management of prostate cancer in patients with different socioeconomic status. Design Survey using UK regional cancer registry data. Setting Regional population based cancer registry. Participants 35 171 patients aged ≥51 with a diagnosis of prostate cancer, 1995-2006. Main outcome measures Use of radiotherapy and radical surgery. Socioeconomic status according to fifths of small area deprivation index. Results Over nine years of the study, information on stage at diagnosis was available for 15 916 of 27 970 patients (57%). During the study period, the proportion of patients treated with radiotherapy remained at about 25%, while use of radical surgery increased significantly (from 2.9% (212/7201) during 1995-7 to 8.4% (854/10 211) during 2004-6, P<0.001). Both treatments were more commonly used in least deprived compared with most deprived patients (28.5% v 21.0% for radiotherapy and 8.4% v 4.0% for surgery). In multivariable analysis, increasing deprivation remained strongly associated with lower odds of radiotherapy or surgery (odds ratio 0.92 (95% confidence interval 0.90 to 0.94), P<0.001, and 0.91 (0.87 to 0.94), P<0.001, respectively, per incremental deprivation group). There were consistently concordant findings with multilevel models for clustering of observations by hospital of diagnosis, with restriction of the analysis to patients with information on stage, and with sequential restriction of the analysis to different age, stage, diagnosis period, and morphology groups.Conclusions After a diagnosis of prostate cancer, men from lower socioeconomic groups were substantially less likely to be treated with radical surgery or radiotherapy. The causes and impact on survival of such differences remain uncertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.