Understanding various subpopulations in chronic kidney disease can improve patient care and aid in developing treatments targeted to patients' needs. Due to the general slow disease progression, electronic health records, which comprise a rich source of longitudinal real-world patient-level information, offer an approach for generating insights into disease. Here we apply the open-source ConvAE framework to train an unsupervised deep learning network using a real-world kidney disease cohort consisting of 2.2 million US patients from the OPTUM EHR database. Numerical patient representations derived from ConvAE are used to derive disease subtypes, inform comorbidities and understand rare disease populations. To identify patients at high risk to develop end-stage kidney disease, we extend a validated algorithm classifying disease severity to hypothesize subpopulations of rapid chronic kidney disease progressors. We demonstrate that using a combination of data-driven methods offers a powerful exploratory approach to understand disease heterogeneity and identify high-risk patients who could be targeted for early therapeutic intervention to prevent end-stage kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.