This paper introduces ANYmal, a quadrupedal robot that features outstanding mobility and dynamic motion capability. Thanks to novel, compliant joint modules with integrated electronics, the 30 kg, 0.5 m tall robotic dog is torque controllable and very robust against impulsive loads during running or jumping. The presented machine was designed with a focus on outdoor suitability, simple maintenance, and user-friendly handling to enable future operation in real world scenarios. Performance tests with the joint actuators indicated a torque control bandwidth of more than 70 Hz, high disturbance rejection capability, as well as impact robustness when moving with maximal velocity. It is demonstrated in a series of experiments that ANYmal can execute walking gaits, dynamically trot at moderate speed, and is able to perform special maneuvers to stand up or crawl very steep stairs. Detailed measurements unveil that even full-speed running requires less than 280 W, resulting in an autonomy of more than 2 h.
Applications of mobile ground robots demand high speed and agility while navigating in complex indoor environments. These present an ongoing challenge in mobile robotics. A system with these specifications would be of great use for a wide range of indoor inspection tasks. This paper introduces Ascento, a compact wheeled bipedal robot that is able to move quickly on flat terrain, and to overcome obstacles by jumping. The mechanical design and overall architecture of the system is presented, as well as the development of various controllers for different scenarios.
This paper presents an omnidirectional aerial manipulation platform for robust and responsive interaction with unstructured environments, toward the goal of contact-based inspection. The fully actuated tilt-rotor aerial system is equipped with a rigidly mounted end-effector, and is able to exert a 6 degree of freedom force and torque, decoupling the system's translational and rotational dynamics, and enabling precise interaction with the environment while maintaining stability. An impedance controller with selective apparent inertia is formulated to permit compliance in certain degrees of freedom while achieving precise trajectory tracking and disturbance rejection in others. Experiments demonstrate disturbance rejection, pushand-slide interaction, and on-board state estimation with depth servoing to interact with local surfaces. The system is also validated as a tool for contact-based non-destructive testing of concrete infrastructure.
Omnidirectional MAVs are a growing field, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency have been developed independently, a robust system that combines the two has not been demonstrated to date. This paper presents VoliroX: a novel omnidirectional vehicle that can exert a wrench in any orientation while maintaining efficient flight configurations. The system design is presented, and a 6 DOF geometric control that is robust to singularities. Flight experiments further demonstrate and verify its capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.