Iron absorption by the duodenal mucosa is initiated by uptake of ferrous Fe(II) iron across the brush border membrane and culminates in transfer of the metal across the basolateral membrane to the portal vein circulation by an unknown mechanism. We describe here the isolation and characterization of a novel cDNA (Ireg1) encoding a duodenal protein that is localized to the basolateral membrane of polarized epithelial cells. Ireg1 mRNA and protein expression are increased under conditions of increased iron absorption, and the 5' UTR of the Ireg1 mRNA contains a functional iron-responsive element (IRE). IREG1 stimulates iron efflux following expression in Xenopus oocytes. We conclude that IREG1 represents the long-sought duodenal iron export protein and is upregulated in the iron overload disease, hereditary hemochromatosis.
Although testosterone (T) has striking effects on mature skeletal size and structure, it is not clear whether this depends exclusively on adult circulating levels of T or whether additional early-life factors also play a role. We have compared the androgen-deficient hypogonadal (hpg) mutant mouse with intact, orchidectomized, and T-treated non-hpg mice to determine relative contributions of adult and perinatal T to bone growth and development. At 3 wk of age, although trabecular and cortical bone structure was normal, bone turnover was significantly altered in hpg male mice; osteoid volume (OV/BV) and osteoblast surface (ObS/BS) were significantly lower and osteoclast surface (OcS/BS) significantly higher in hpg mice compared with age-matched non-hpg mice, pointing to a role for the perinatal T surge in determining bone turnover levels before sexual maturity. At 9 wk of age, the hpg bone phenotype mimicked closely that of age-matched non-hpg mice that had been orchidectomized at 3 wk of age, including low trabecular bone mass and high bone turnover. These bone phenotypes of hpg and orchidectomized non-hpg mice were all prevented by replacement doses of T or dihydrotestosterone (DHT), suggesting that these are determined by adult sex steroid hormones. In contrast, a short bone phenotype that could not be prevented by T or DHT treatment was observed in 9-wk-old hpg mice yet not in intact or castrated non-hpg mice. These data suggest a role for the perinatal T surge in determining adult bone length and confirms that adult circulating T determines adult bone density.
Patients suffering from hereditary hemochromatosis (HH) show progressive iron overload as a consequence of increased duodenal iron absorption. It has been hypothesized that mutations in the HH gene HFE cause misprogramming of the duodenal enterocytes towards a paradoxical iron-deficient state, resulting in increased iron transporter expression. Previous reports concerning gene expression levels of the duodenal iron transporters DMT1 and IREG1 in HH patients and animal models are controversial, however, and in many cases only mRNA expression levels were investigated. To analyze the duodenal expression of DMT1, Ireg1, Dcytb, and hephaestin and the association with iron overload in adult Hfe(-/-) mice, an Hfe(-/-) mouse line was generated. Duodenal DMT1 and Ireg1 protein levels, duodenal DMT1, Ireg1, Dcytb, hephaestin, and TfR1 mRNA levels, and hepatic hepcidin mRNA levels were quantified and the correlation to liver iron contents was calculated. We report that duodenal DMT1 and Ireg1 mRNA levels and DMT1 and Ireg1 protein levels remained unaffected by the Hfe deletion. Furthermore, duodenal hephaestin and TfR1 mRNA expression and hepatic hepcidin mRNA expression remained unaltered, while the duodenal mRNA expression of the brush border ferric reductase Dcytb was significantly increased in Hfe(-/-) mice. We found no correlation between the expression level of any of the analyzed transcripts and the liver iron content. In conclusion, the lack of correlation between DMT1 and Ireg1 protein expression and the liver iron content suggests that elevated duodenal iron transporter expression is not required for high liver iron overload. Hfe(-/-) mice do not necessarily display features of iron deficiency in the duodenum, indicated by an increase in mRNA and protein levels of DMT1 and Ireg1. Rather, the duodenal ferric reductase Dcytb may act as a possible mediator of iron overload in Hfe deficiency.
Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.