Metal-based high-touch surfaces used for indoor applications such as doorknobs, light switches, handles and desks need to remain their antimicrobial properties even when tarnished or degraded. A novel laboratory methodology of relevance for indoor atmospheric conditions and fingerprint contact has therefore been elaborated for combined studies of both tarnishing/corrosion and antimicrobial properties of such high-touch surfaces. Cu metal was used as a benchmark material. The protocol includes pre-tarnishing/corrosion of the high touch surface for different time periods in a climatic chamber at repeated dry/wet conditions and artificial sweat deposition followed by the introduction of bacteria onto the surfaces via artificial sweat droplets. This methodology provides a more realistic and reproducible approach compared with other reported procedures to determine the antimicrobial efficiency of high-touch surfaces. It provides further a possibility to link the antimicrobial characteristics to physical and chemical properties such as surface composition, chemical reactivity, tarnishing/corrosion, surface roughness and surface wettability. The results elucidate that bacteria interactions as well as differences in extent of tarnishing can alter the physical properties (e.g. surface wettability, surface roughness) as well as the extent of metal release. The results clearly elucidate the importance to consider changes in chemical and physical properties of indoor hygiene surfaces when assessing their antimicrobial properties.
Methods for bacterial detection are needed to advance the infection research and diagnostics. Based on conformation-sensitive fluorescent tracer molecules, optotracing was recently established for dynamic detection and visualization of structural amyloids and polysaccharides in the biofilm matrix of gram-negative bacteria. Here, we extend the use of optotracing for detection of gram-positive bacteria, focussing on the clinically relevant opportunistic human pathogen Staphylococcus aureus. We identify a donor-acceptor-donor-type optotracer, whose binding-induced fluorescence enables real-time detection, quantification, and visualization of S. aureus in monoculture and when mixed with gram-negative Salmonella Enteritidis. An algorithm-based automated high-throughput screen of 1920 S. aureus transposon mutants recognized the cell envelope as the binding target, which was corroborated by super-resolution microscopy of bacterial cells and spectroscopic analysis of purified cell wall components. The binding event was essentially governed by hydrophobic interactions, which permitted custom-designed tuning of the binding selectivity towards S. aureus versus Enterococcus faecalis by appropriate selection of buffer conditions. Collectively this work demonstrates optotracing as an enabling technology relevant for any field of basic and applied research, where visualization and detection of S. aureus is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.