Within the frame of a simple, long-wavelength, quasi-static description, we present a theoretical characterization of the optical response of metal nanoparticles doped with active gain elements in a core-shell (metallic core within an active dielectric shell) and nano-shell (active dielectric core within a metallic shell) configurations. The common feature of these structures is that, adding gain to the system produces an increase of the quality of the plasmon resonance, which becomes sharper and sharper until a singular point, after which, the system switches from absorptive to emissive (nanolaser). We use this aforementioned simple model to develop a general method allowing us to calculate both the expected singular plasmon frequency and the gain level needed to realize it and to discuss the spectral deformation occurring before and after this singular point. Finally, we propose a way to calculate if the singular behavior is reachable using realistic amounts of gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.