Large-conductance Ca- and voltage-activated K (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene (Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with no current effective treatment. Accumulation of abnormal protein inclusions containing SOD1, TARDBP, FUS, among other proteins, is a pathological hallmark of ALS. Autophagy is the major degradation pathway involved in the clearance of damaged organelles and protein aggregates. Although autophagy has been shown to efficiently degrade ALS-linked mutant protein in cell culture models, several studies suggest that autophagy impairment may also contribute to disease pathogenesis. In this report, we tested the potential use of trehalose, a disaccharide that induces MTOR-independent autophagy, in the development of experimental ALS. Administration of trehalose to mutant SOD1 transgenic mice significantly prolonged life span and attenuated the progression of disease signs. These effects were associated with decreased accumulation of SOD1 aggregates and enhanced motoneuron survival. The protective effects of trehalose were associated with increased autophagy levels in motoneurons. Cell culture experiments demonstrated that trehalose led to mutant SOD1 degradation by autophagy in NSC34 motoneuron cells and also protected primary motoneurons against the toxicity of conditioned media from mutant SOD1 transgenic astrocytes. At the mechanistic level, trehalose treatment led to a significant upregulation in the expression of key autophagy-related genes at the mRNA level including Lc3, Becn1, Sqstm1 and Atg5. Consistent with these changes, trehalose administration enhanced the nuclear translocation of FOXO1, an important transcription factor involved in the activation of autophagy in neurons. This study suggests a potential use of trehalose and enhancers of MTOR-independent autophagy for the treatment of ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.