Metabolic inhibitors based on rare bacterial monosaccharide scaffolds interfere with bacterial glycan biosynthesis in a bacteria-selective manner.
Antibodies specific for capsular polysaccharides play a central role in immunity to encapsulated Streptococcus pneumoniae, but little is known about their genetics or the variable (V) region polymorphisms that affect their protective function. To begin to address these issues, we used combinatorial library cloning to isolate pneumococcal polysaccharide (PPS)-specific Fab fragments from two vaccinated adults. We determined complete V region primary structures and performed antigen binding analyses of seven Fab fragments specific for PPS serotype 6B, 14, or 23F. Fabs were of the immunoglobulin G2 or A isotype. Several V H III gene segments (HV 3-7, 3-15, 3-23, and 3-11) were identified. V L regions were encoded by several genes (KV 4-1, 3-15, 2-24, and 2D-29) and a gene (LV 1-51). Deviation of the V H and V L regions from their assigned germ line counterparts indicated that they were somatically mutated. Fabs of the same serotype specificity isolated from a single individual differed in affinity, and these differences could be accounted for either by the extent of mutation among clonal relatives or by usage of different V-region genes. Thus, functionally disparate anti-PPS antibodies can arise within individuals both by activation of independent clones and by intraclonal somatic mutation. For one pair of clonally related Fabs, the more extensively mutated V H was associated with lower affinity for PPS 14, a result suggesting that somatic mutation could lead to diminished protective efficacy. These findings indicate that the PPS repertoire in the adult derives from memory B-cell populations that have class switched and undergone extensive hypermutation.
Bacterial cell surface glycans are quintessential drug targets due to their critical role in colonization of the host, pathogen survival, and immune evasion. The dense cell envelope glycocalyx contains distinctive monosaccharides that are stitched together into higher order glycans to yield exclusively bacterial structures that are critical for strain fitness and pathogenesis. However, the systematic study and inhibition of bacterial glycosylation enzymes remains challenging. Bacteria produce glycans containing rare sugars refractory to traditional glycan analysis, complicating the study of bacterial glycans and the identification of their biosynthesis machinery. To ease the study of bacterial glycans in the absence of detailed structural information, we used metabolic glycan labeling to detect changes in glycan biosynthesis. Here, we screened wild-type versus mutant strains of the gastric pathogen Helicobacter pylori, ultimately permitting the identification of genes involved in glycoprotein and lipopolysaccharide biosynthesis. Our findings provide the first evidence that H. pylori protein glycosylation proceeds via a lipid carrier-mediated pathway that overlaps with lipopolysaccharide biosynthesis. Protein glycosylation mutants displayed fitness defects consistent with those induced by small molecule glycosylation inhibitors. Broadly, our results suggest a facile approach to screen for bacterial glycosylation genes and gain insight into their biosynthesis and functional importance, even in the absence of glycan structural information.
Helicobacter pylori (H. pylori) infection poses a worldwide public health crisis, as chronic infection is rampant and can lead to gastric ulcers, gastritis, and gastric cancer. Unfortunately, frontline therapies cause harmful side effects and are often ineffective due to antibiotic resistance. The FDA-approved drug auranofin is a gold complex with a Au(I) core coordinated with triethylphosphine and peracetylated thioglucose as the ligands. Auranofin is used for the treatment of rheumatoid arthritis and also displays potent activity against H. pylori. One of auranofin’s modes of action involves cell death by disrupting cellular thiol-redox balance maintained by thioredoxin reductase (TrxR), but this disruption leads to unwanted side effects due to mammalian cell toxicity. Here, we developed and tested sugar-modified analogs of auranofin as potential antibiotics against H. pylori, with the rationale that modulating the sugar moiety would bias uptake by targeting bacterial cells and mitigating mammalian cell toxicity. Sugar-modified auranofin analogs displayed micromolar minimum inhibitory concentrations against H. pylori, maintained nanomolar inhibitory activity against the target enzyme TrxR, and caused reduced toxicity to mammalian cells. Taken together, our results suggest that structurally modifying the sugar component of auranofin has the potential to yield superior antibiotics for the treatment of H. pylori infection. Broadly, glyco-tailoring is an attractive approach for repurposing approved drugs.
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino L-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino L-sugars starting from readily available L-rhamnose and L-fucose. Azidecontaining L-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of L-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.