We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71: [4206][4207][4208][4209][4210][4211] 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential-and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions.
Mutation of sarA resulted in a reduced capacity to form a biofilm in six of the eight Staphylococcus aureus strains we tested (UAMS-1, UAMS-601, SA113, SC-01, S6C, and DB). The exceptions were Newman, which formed a poor biofilm under all conditions, and RN6390, which consistently formed a biofilm only after mutation of agr. Mutation of agr in other strains had little impact on biofilm formation. In every strain other than Newman, including RN6390, simultaneous mutation of sarA and agr resulted in a phenotype like that observed with the sarA mutants. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation.Biofilm formation plays an important role in the pathogenesis of staphylococcal infection. This is particularly true for Staphylococcus epidermidis. Indeed, there is an almost direct correlation between the emergence of S. epidermidis as a pathogen and its capacity to colonize indwelling medical devices (26). However, S. aureus is also capable of forming a biofilm, and this presumably contributes to its ability to cause at least some forms of infection (6, 16).Biofilm formation in both S. epidermidis and S. aureus is a multifactorial process that is influenced by a number of factors (9). Among the most important of these is the polysaccharide intercellular adhesin. The enzymes required for polysaccharide intercellular adhesin synthesis are encoded within the icaADBC operon, mutation of which results in a reduced capacity to form a biofilm in both S. aureus and S. epidermidis (6, 10). Expression of the icaADBC operon is more tightly controlled in S. aureus, as evidenced by the fact that it is expressed at very low levels under in vitro growth conditions (16).One of the loci known to modulate expression of the icaADBC operon is icaR, which is located immediately upstream of icaA and encodes a transcriptional repressor (9). However, regulatory loci that have more global effects also have an impact on biofilm formation. Included among these are the accessory gene regulator (agr) and the staphylococcal accessory regulator (sarA). For instance, Vuong et al. (27) examined 105 strains of S. aureus and found that strains that failed to produce detectable amounts of ␦-toxin had a greater propensity to form a biofilm. It was proposed that ␦-toxin acts as a surfactant and thereby limits the ability of these strains to aggregate into biofilms. Importantly, the gene for ␦-toxin (hld) is encoded within the RNAIII regulatory molecule that is responsive to the agr-encoded quorum sensing system (1). This implies that agr is not induced in biofilms despite the relatively high density of bacteria. Similarly, Pratten et al. (19) compared the abilities of agr and sarA mutants to adhere to glass and found that the sarA mutant adhered better than the agr mutant or the wild-type strain. This suggests that mutation of sarA might enhance at least the initial stages of biofilm formation. However, another study examined adherence in the presence of shear forces (i.e., in flow...
Mutation of staphylococcal accessory regulator (sarA) results in increased production of extracellular proteases in Staphylococcus aureus, which has been correlated with decreased biofilm formation and decreased accumulation of extracellular toxins. We used murine models of implant-associated biofilm infection and S. aureus bacteremia (SAB) to compare virulence of USA300 strain LAC, its isogenic sarA mutant, and derivatives of each of these strains with mutations in all 10 of the genes encoding recognized extracellular proteases. The sarA mutant was attenuated in both models, and this was reversed by eliminating production of extracellular proteases. To examine the mechanistic basis, we identified proteins impacted by sarA in a protease-dependent manner. We identified 253 proteins where accumulation was reduced in the sarA mutant compared to the parent strain, and was restored in the sarA/protease mutant. Additionally, in SAB, the LAC protease mutant exhibited a hypervirulent phenotype by comparison to the isogenic parent strain, demonstrating that sarA also positively regulates production of virulence factors, some of which are subject to protease-mediated degradation. We propose a model in which attenuation of sarA mutants is defined by their inability to produce critical factors and simultaneously repress production of extracellular proteases that would otherwise limit accumulation of virulence factors.
The accessory gene regulator (agr) and the staphylococcal accessory regulator (sar) are central regulatory elements that control the production of Staphylococcus aureus virulence factors. To date, the functions of these loci have been defined almost exclusively using RN6390, which is representative of the laboratory strain 8325-4. However, RN6390 was recently shown to have a mutation in rsbU that results in a phenotype resembling that of a sigB mutant (I. Kullik et al., J. Bacteriol. 180:4814-4820, 1998). For that reason, it remains unclear whether the regulatory events defined in RN6390 are representative of the events that take place in clinical isolates of S. aureus. To address this issue, we generated mutations in the sarA and agr loci of three laboratory strains (RN6390, Newman, and S6C) and four clinical isolates (UAMS-1, UAMS-601, DB, and SC-1). Mutation of sarA in the cna-positive strains UAMS-1 and UAMS-601 resulted in an increased capacity to bind collagen, while mutation of agr had little impact. Northern blot analysis confirmed that the increase in collagen binding was due to increased cna transcription. Without exception, mutation of sarA resulted in increased production of proteases and a decreased capacity to bind fibronectin. Mutation of agr had the opposite effect. Although mutation of sarA resulted in a slight reduction in fnbA transcription, changes in the ability to bind fibronectin appeared to be more directly correlated with changes in protease activity. Lipase production was reduced in both sarA and agr mutants. While mutation of sarA in RN6390 resulted in reduced hemolytic activity, it had the opposite effect in all other strains. There appeared to be reduced levels of the sarC transcript in RN6390, but there was no difference in the overall pattern of sar transcription or the production of SarA. Although mutation of sarA resulted in decreased RNAIII transcription, this effect was not evident under all growth conditions. Taken together, these results suggest that studies defining the regulatory roles of sarA and agr by using RN6390 are not always representative of the events that occur in clinical isolates of S. aureus.Staphylococcus aureus is an opportunistic pathogen capable of causing a wide variety of infections. Its pathogenic diversity is due to its ability to produce a diverse array of virulence factors. These factors fall into two groups based on whether they remain associated with the cell surface or are exported into the extracellular milieu. In vitro, these two groups are globally and inversely regulated, with the surface proteins being produced during the exponential growth phase and the exoproteins being produced as cultures enter postexponential growth (33). This is consistent with the fact that the production of S. aureus virulence factors is responsive to a quorum-sensing signal (27). This signal exerts its regulatory effects through a two-component signal transduction system encoded by the accessory gene regulator (agr). Induction of agr results in increased expression of...
BackgroundThe accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci.Methodology/Principal FindingsWe generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to form a biofilm in the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard.Conclusions and SignificanceThe results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.