Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes). Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings. A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia. However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes. Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain.
The analysis of N-linked glycans using liquid chromatography and mass spectrometry (LC-MS) presents significant challenges, particularly owing to their hydrophilic nature. To address these difficulties, a variety of derivatization methods has been developed to facilitate improved ionization and detection sensitivity. One such method, the Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)™ strategy for labeling glycans, has previously been utilized in the analysis of Nand O-linked glycans in biological samples. To assess the maximum sensitivity and separability of the INLIGHT ™ preparation and analysis pipeline, several critical steps were investigated. First, recombinant and nonrecombinant sources of PNGase F were compared to assess variations in the released glycans. Second, modifications in the INLIGHT™ derivatization step were evaluated including temperature optimization, solvent composition changes, and reaction condition length and tag concentration. Optimization of the modified method resulted in 20-100 times greater peak areas for the detected N-linked glycans in fetuin and horseradish peroxidase compared to the standard method. Furthermore, the identification of low abundance glycans, such as (Fuc) 1 (Gal) 2 (GlcNAc) 4 (Man) 3 (NeuAc) 1 and (Gal) 3 (GlcNAc) 5 (Man) 3 (NeuAc) 3, was possible. Finally, the optimal LC setup for the INLIGHT™ Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/openaccess/authors-rights/aam-terms-v1
Isomeric peptide analyses are an analytical challenge of great importance to therapeutic monoclonal antibody and other biotherapeutic product development workflows. Aspartic acid (Asp, D) to isoaspartic acid (isoAsp, isoD) isomerization is a critical quality attribute (CQA) that requires careful control, monitoring, and quantitation during the drug discovery and production processes. While the formation of isoAsp has been implicated in a variety of disease states such as autoimmune diseases and several types of cancer, it is also understood that the formation of isoAsp results in a structural change impacting efficacy, potency, and immunogenic properties, all of which are undesirable. Currently, lengthy ultrahighperformance liquid chromatography (UPLC) separations are coupled with MS for CQA analyses; however, these measurements often take over an hour and drastically limit analysis throughput. In this manuscript, drift tube ion mobility spectrometry−mass spectrometry (DTIMS−MS) and both a standard and high-resolution demultiplexing approach were utilized to study eight isomeric Asp and isoAsp peptide pairs. While the limited resolving power associated with the standard DTIMS analysis only separated three of the eight pairs, the application of HRdm distinguished seven of the eight and was only unable to separate DL and isoDL. The rapid high-throughput HRdm DTIMS−MS method was also interfaced with both flow injection and an automated solid phase extraction system to present the first application of HRdm for isoAsp and Asp assessment and demonstrate screening capabilities for isomeric peptides in complex samples, resulting in a workflow highly suitable for biopharmaceutical research needs.
In 2017, the United States Department of Health and Human Services declared the widespread misuse and abuse of prescription and illicit opioids an epidemic. However, this epidemic dates back to the 1990s when opioids were extensively prescribed for pain management. Currently, opioids are still recommended for pain management, and given their abuse potential, rapid screening is imperative for patient treatment. Of particular importance is assessing pain management patient compliance, where evaluating drug use is crucial for preventing opioid abuse and potential overdoses. In this work, we utilized drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) to develop a rapid screening method for 33 target opioids and opioid urinary metabolites. Collision cross section values were determined for all target molecules using a flow-injection DTIMS-MS method, and clear differentiation of 27 out of the 33 opioids without prior chromatographic separation was observed when utilizing a high resolution demultiplexing screening approach. An automated solid phase extraction (SPE) platform was then coupled to DTIMS-MS for 10 s sample-to-sample analyses. This SPE-IMS-MS approach enabled the rapid screening of urine samples for opioids and presents a major improvement in sample throughput compared to traditional chromatographic analyses coupled with MS, which routinely take several minutes per sample. Overall, this vast reduction in analysis time facilitates a faster turn-around for patient samples, providing great benefits to clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.