ObjectiveSystematic review and analysis of definitions of translational research.Materials and methodsThe final corpus was comprised of 33 papers, each read by at least 2 reviewers. Definitions were mapped to a common set of research processes for presentation and analysis. Influence of papers and definitions was further evaluated using citation analysis and agglomerative clustering.ResultsAll definitions were mapped to common research processes, revealing most common labels for each process. Agglomerative clustering revealed 3 broad families of definitions. Citation analysis showed that the originating paper of each family has been cited ~10 times more than any other member.DiscussionAlthough there is little agreement between definitions, we were able to identify an emerging consensus 5-phase (T0–T4) definition for translational research. T1 involves processes that bring ideas from basic research through early testing in humans. T2 involves the establishment of effectiveness in humans and clinical guidelines. T3 primarily focuses on implementation and dissemination research while T4 focuses on outcomes and effectiveness in populations. T0 involves research such as genome-wide association studies which wrap back around to basic research.ConclusionWe used systematic review and analysis to identify emerging consensus between definitions of translational research phases.
Assigning authorship and recognizing contributions to scholarly works is challenging on many levels. Here we discuss ethical, social, and technical challenges to the concept of authorship that may impede the recognition of contributions to a scholarly work. Recent work in the field of authorship shows that shifting to a more inclusive contributorship approach may address these challenges. Recent efforts to enable better recognition of contributions to scholarship include the development of the Contributor Role Ontology (CRO), which extends the CRediT taxonomy and can be used in information systems for structuring contributions. We also introduce the Contributor Attribution Model (CAM), which provides a simple data model that relates the contributor to research objects via the role that they played, as well as the provenance of the information. Finally, requirements for the adoption of a contributorship-based approach are discussed.
Twelve evidence-based profiles of roles across the translational workforce and two patients were made available through clinical and translational science (CTS) Personas, a project of the Clinical and Translational Science Awards (CTSA) Program National Center for Data to Health (CD2H). The persona profiles were designed and researched to demonstrate the key responsibilities, motivators, goals, software use, pain points, and professional development needs of those working across the spectrum of translation, from basic science to clinical research to public health. The project’s goal was to provide reliable documents that could be used to inform CTSA software development projects, educational resources, and communication initiatives. This paper presents the initiative to create personas for the translational workforce, including the methodology, engagement strategy, and lessons learned. Challenges faced and successes achieved by the project may serve as a roadmap for others searching for best practices in the creation of Persona profiles.
OpenVIVO is a free and open-hosted semantic web platform that anyone can join and that gathers and shares open data about scholarship in the world. OpenVIVO, based on the VIVO open-source platform, provides transparent access to data about the scholarly work of its participants. OpenVIVO demonstrates the use of persistent identifiers, the automatic real-time ingest of scholarly ecosystem metadata, the use of VIVO-ISF and related ontologies, the attribution of work, and the publication and reuse of data-all critical components of presenting, preserving, and tracking scholarship. The system was created by a cross-institutional team over the course of 3 months. The team created and used RDF models for research organizations in the world based on Digital Science GRID data, for academic journals based on data from CrossRef and the US National Library of Medicine, and created a new model for attribution of scholarly work. All models, data, and software are available in open repositories.
ObjectiveThe paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries.MethodsA group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans.ResultsThe seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions.ConclusionsLibraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.