Aquatic resource managers are continually faced with construction or site development proposals which, if allowed to proceed, would ultimately alter the physical structure and cover of fish habitat. In the absence of clear quantitative guidelines linking the change in habitat to fish, resource managers often use the change in habitat area as a basis for decisions. To assess the weight of scientific evidence in support of management decisions, we summarized both the observational and experimental freshwater fish-habitat literature. We then extracted data from experimental studies (where possible) for inclusion in a meta-analysis, to provide a more rigorous assessment of the published results of experimental habitat manipulations. We found relatively strong and consistent correlational evidence linking fish and physical habitat features, yet inconsistent evidence when narratively reviewing the experimental literature. On the whole, decreases in structural habitat complexity are detrimental to fish diversity and can change species composition. Increases in structural complexity showed increases, decreases, or no measurable changes in species and (or) communities. The majority of our meta-analyses resulted in supporting a direct link between habitat and fish abundance or biomass, with fish biomass responding most strongly to habitat change. Habitat alterations are most likely to affect individual species or community structure, and thus evaluating the extent of the effect on a biological basis depends on management objectives.
Often the Before-After-Control-Impact (BACI) design is suggested as being a statistically powerful experimental design in environmental impact studies. If the timing and location of the impact are known and adequate pre-data are collected, the BACI design is considered optimal to help isolate the effect of the development from natural variability. This paper presents 9 years of results from a long-term BACI experiment tested using a range of statistical models and post-impact monitoring designs. To explore suboptimal designs that are often utilized in environmental effects monitoring, the same data were also explored assuming either no control system was available (Before-After only), or that no pre-impact data were available (Control-Impact only). The results of the BACI design were robust to the statistical model used, and the BACI design was able to detect effects from the impact that the two suboptimal designs failed to detect. However, the BACI design demonstrated different conclusions depending on the number and configuration of post-impact years included in the analysis. Our results reinforce the idea that caution should be employed when using, or interpreting results from, a BACI design in an environmental impact study, but demonstrate that a well-designed BACI remains one of the best models for environmental effects monitoring programs.
Although dams have impounded the majority of the world's altered watercourses, there is a growing awareness of the importance of mitigating or reversing some of the negative effects on aquatic ecosystems and the related services they provide. We used an ecosystem approach, including detailed studies on hydrology, geomorphology, invertebrates, fish, and food web dynamics on a river altered by waterpower production and a natural flowing river to assess system responses to a change in the altered flow regime (specifically the ramping rate or rate of change of flow). Although there was significant alteration in the flow and sediment regimes under the original restricted ramping rate regime, differences in many biotic variables in the two rivers were not significant including total invertebrate abundance and diversity, fish biomass, fish condition, and food web length. However, significant differences in the abundance and distribution of some sensitive invertebrate taxa and fish diversity were observed between the altered and natural flowing rivers as was the energy base of the food web, measured with stable isotopes. The altered river had lower overall abundance of Odonata, Ephemeroptera and Plecoptera, and Diptera, Trichoptera, Ephemeroptera, and Coleoptera increase in abundance towards the deeper and higher velocity thalweg. On average, υ 13 C values were lighter in altered sites compared to unaltered sites, likely due to carbon export from the upstream reservoir. Results will inform Canadian federal and provincial policy concerning the efficacy of ramping rate restrictions as a tool to mitigate the environmental impacts associated with peaking waterpower dam operations.
The recognition that we are in the distinct new epoch of the Anthropocene suggests the necessity for ecological restoration to play a substantial role in repairing the Earth's damaged ecosystems. Moreover, the precious yet limited resources devoted to restoration need to be used wisely. To do so, we call for the ecological restoration community to embrace the concept of evidence-based restoration. Evidence-based restoration involves the use of rigorous, repeatable, and transparent methods (i.e. systematic reviews) to identify and amass relevant knowledge sources, critically evaluate the science, and synthesize the credible science to yield robust policy and/or management advice needed to restore the Earth's ecosystems. There are now several examples of restoration-relevant systematic reviews that have identified instances where restoration is entirely ineffective. Systematic reviews also serve as a tool to identify the knowledge gaps and the type of science needed (e.g. repeatable, appropriate replication, use of controls) to improve the evidence base. The restoration community, including both scientists and practitioners, needs to make evidence-based restoration a reality so that we can move from best intentions and acting with so-called "purpose" to acting for meaningful impact. Doing so has the potential to serve as a rallying point for reframing the Anthropocene as a so-called "good" epoch.
We removed 40%–70% of nearshore wood habitat from three lakes to test the link between habitat and productive capacity, specifically focusing on the provision of substrate for periphyton and invertebrate production by submerged wood. Our objectives were fourfold: (i) to calculate the total amount of invertebrate and periphyton biomass removed with the wood; (ii) to explore wood's value as habitat for invertebrates and periphyton; (iii) to determine the response within residual epixylic periphyton and invertebrate biomass; and (iv) to assess interactions between periphyton and invertebrates and other factors that may influence wood's productivity. Invertebrate biomass was greater on wood than in sediment, but the total available sediment area exceeded that of wood, thus a relatively small proportion of overall productivity was lost. Highly decayed wood supported greater chlorophyll a concentrations and more invertebrate biomass and diversity than fresh wood. The removal had no measurable effect on whole-lake water chemistry, nor did it result in a response in residual epixylic periphyton and invertebrate biomass. We conclude that we permanently reduced a dynamic and concentrated biomass of primary and secondary productivity in lakes by removing submerged wood habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.