Homeostasis of connective joint tissues depends on the maintenance of an extracellular matrix, consisting of an integrated assembly of collagens, glycoproteins, proteoglycans and glycosaminoglycans (GAGs). Isomeric chondroitin sulfate (CS) glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work profiles the CS epitopes expressed by different joint tissues as a function of age and osteoarthritis. Glycosaminoglycans were extracted from joint tissues (cartilage, tendon, ligment, muscle and synovium) and partially depolymerized using chondroitinase enzymes. The oligosaccharide products were differentially stable isotope labeled by reductive amination using 2-anthranilic acid-d 0 or -d 4 and subjected to amide-HILIC on-line liquid chromatography-tandem mass spectrometry. The analysis presented herein enables simultaneous profiling of the expression of non-reducing end, linker region, and Δ-unsaturated interior oligosaccharide domains of the CS chains among the different joint tissues. The results provide important new information on the changes to the expression of CS GAG chains during disease and development.
Articular cartilage is a highly specialized smooth connective tissue whose proper functioning depends on the maintenance of an extracellular matrix consisting of an integrated assembly of collagens, glycoproteins, proteoglycans (PG), and glycosaminoglycans. Isomeric chondroitin sulfate glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work introduces a novel glycosaminoglycan extraction method for the quantification of mixtures of chondroitin sulfate oligosaccharides from intact cartilage tissue for mass spectral analysis. Glycosaminoglycans were extracted from intact cartilage samples using a combination of ethanol precipitation and enzymatic release followed by reversed-phase and strong anion exchange solid-phase extraction steps. Extracted chondroitin sulfate glycosaminoglycans were partially depolymerized using chondroitinases, labeled with 2-anthranilic acid-d(4) (2-AA) and subjected to size exclusion chromatography with online electrospray ionization mass spectrometric detection in the negative ion mode. The method presented herein enabled simultaneous determination of sulfate position and uronic acid epimerization in juvenile bovine and adult human cartilage samples. The method was applied to a series of 13 adult human cartilage explants. Standard deviation of the mean for the measurements was 1.6 on average. Coefficients of variation were approximately 4% for all compositions of 40% or greater. These results show that the new method has sufficient accuracy to allow determination of topographical distribution of glycoforms in connective tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.