Similarities in both water and electric current flows allow the relation of hydraulic and geoelectric parameters of porous aquifers. Based on this assumption and the importance of the hydraulic parameters for groundwater analyses, this study aimed to estimate hydraulic conductivity (K) and transmissivity (T) with vertical electrical sounding (VES) in the porous aquifer at the experimental farm of the University of Brasilia, Brazil. VES is a geophysical technique that provides electrical resistivity (ρ, Ω m) and thickness (h) of the subsurface layers. The ρ and h aquifer data, associated with lithology, water table level (WTL), and groundwater electrical resistivity (ρw, Ω m), allowed the calculation of complementary geoelectric parameters (formation factor, F, and Dar Zarrouk parameters) and the relation with K and T, determined via slug test. VES data allowed the elaboration of geoelectric models, with mean absolute percentage error (MAPE) below 6% compared to field data, and the identification of the aquifer in each VES station. Significant exponential regression models (R2 > 0.5 and p-value < 0.05) showed the possibility of using geoelectric parameters to estimate hydraulic parameters. This study allowed the verification of the applicability of consolidated models and the identification of appropriate empirical relationships for hydrogeological characterization in the Brazilian tropical porous aquifers. The results of this work, besides the rapid sampling and low cost of performing vertical electrical sounding (VES), may justify the use of this geophysical technique for preliminary porous aquifer characterization, especially in regions absent of or with insufficient monitoring wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.