The electronic properties of interfaces can depend on their isotopic constitution. One known case is that of cyclohexane physisorbed on Rh(111), in which isotope effects have been measured on the work function change and desorption energies. These effects can only be captured by calculations including nuclear quantum effects (NQE). In this paper, this interface is addressed employing dispersion‐inclusive density‐functional theory coupled to a quasi‐harmonic (QH) approximation for NQE, as well as to fully anharmonic ab initio path integral molecular dynamics (PIMD). The QH approximation is able to capture that deuterated cyclohexane has a smaller adsorption energy and lies about 0.01 Å farther from the Rh(111) surface than its isotopologue, which can be correlated to the isotope effect in the work function change. An investigation of the validity of the QH approximation relying on PIMD simulations, leads to the conclusion that although this interface is highly impacted by anharmonic quantum fluctuations in the molecular layer and at bonding sites, these anharmonic contributions play a minor role when analyzing isotope effects at low temperatures. Nevertheless, anharmonic quantum fluctuations cause an increase in the distance between the molecular layer and Rh(111), a consequent smaller overall work function change, and intricate changes in orbital hybridization.
Interactions between molecules and electrode surfaces play a key role in electrochemical processes and are a subject of extensive research, both experimental and theoretical. <p>In this manuscript, we address the water dissociation reaction on a Pd(111) electrode surface, modelled as a slab embedded in an external electric field. We aim at unraveling the relationship between surface charge and zero-point-energy in aiding or hindering this reaction. We calculate energy barriers with dispersion-corrected density-functional theory and an efficient parallel implementation of the nudged-elastic-band method.</p> <p>We show that the lowest dissociation barrier, and consequently highest reaction rate, takes place when the field reaches a strength where two different geometries of the water molecule in the reactant state are equally stable. Zero-point energy contributions to this reaction, on the other hand, remain nearly constant across a wide range of electric field strengths, despite significant changes in the reactant state. Interestingly, we show that the application of electric fields that induce a negative charge on the surface can make nuclear tunneling more significant for these reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.